C# Info-Sup
PARTIEL 1 — Janvier 2014 EpriTA

Partiel C# - Sujet 1
Vendredi 10 Janvier 2014 9h - 12h

1 Consignes de rendu

A la fin de ce TP, vous serez dans 'obligation de rendre une archive respectant I’architecture suivante :

-- rendu-tpcsl-login_x.zip
|-- login_x/
| -- AUTHORS
| -- README
| -- Bonus.txt
|-- Ex1/
|-- Ex1/
|-- Ex1.sln
|-- Ex2/
|-- Ex2/
| -- Ex2.sln
|-- Ex3/
|-- Ex3/
| -- Ex3.sln

Les différentes fonctions demandées dans cet examen devront étre codées dans un fichier .cs nommé
suivant le format suivant : Ex[1-2-3].cs

Bien entendu, vous devez remplacer login_x par votre propre login.

Fichier AUTHORS

Le fichier nommé AUTHORS doit se trouver & la racine de votre rendu. Il devra contenir tous les auteurs
du projet (en Poccurrence, VOUS seulement). Le format, pour chaque auteur, est le suivant :

— Le caractére “*’ suivi d’un espace.

— Le login de I’étudiant.

— Un retour a la ligne.

Conseils et remarques

Lisez le sujet dans son intégralité avant de commencer. Une fois que vous 'avez lu, relisez-le.
Reéalisez les exercices dans 'ordre car ils sont en difficulté croissante.
N’oubliez pas de vérifier les points suivants avant de rendre :

— Le fichier AUTHORS doit étre au format habituel (rappelé ci-dessus).
Aucun dossier bin ou obj dans le rendu.

— Les fonctions demandées doivent respecter le prototype donné
Le code doit COMPILER.

2 Consignes

1. Pour chaque exercice, dans son dossier de rendu, vous créerez un nouveau projet en console avec
Visual Studio, que vous nommerez selon le nom de l’exercice en question.

2. Vous indenterez votre code de maniére & ce que cela soit lisible pour nous, correcteurs. Pour cela,
souvenez-vous du raccourci Ctrl-K Ctrl-F.

3. Sauf si explicitement indiqué dans le sujet, les seules fonctions autorisées sont :
(a) Console.Write, Console.WriteLine, Console.Read, Console.ReadLine

(b) Array.GetLength, String.Length
%zfcnc
2016

cooe ALore

C# Info-Sup
PARTIEL 1 — Janvier 2014 EpriTA

3 Exercice 1 : Préliminaires (Ex1.cs)

3.1 De la chaine de caractéres a ’entier

Dans cet exercice, vous devez convertir une chaine de caractéres contenant des chiffres en un entier
(exemple : "2016" —> 2016).
Les cas d’erreurs (si la string s ne représente pas un entier, etc...) ne seront pas testés.

Prototype :

|public static int MyAtoi(string s);

3.2 Fonction de hachage

Dans cette partie de I’examen, vous devez réaliser une fonction de hachage.

"On nomme fonction de hachage une fonction particuliére qui, & partir d’'une donnée four-
nie en entrée, calcule une empreinte servant a identifier rapidement, bien qu’incomplétement,
la donnée initiale. Les fonctions de hachage sont utilisées en informatique et en cryptographie."

Notre fonction prend en argument une chaine de caractéres et renvoie un entier compris entre 0 et 99. Le
résultat est le modulo 100 de la somme des valeurs ASCII de chaque caractére de la chaine.

Protytype :

|public static Hash(string s);

Exemples :

hash("a") // La valeur ASCII de ’a’ étant 97, 97 modulo 100 vaut 97.
97

hash("abc")

94

hash("It is not that hard")
22

4 Exercice 2 : Niveau intermédiaire (Ex2.cs)

Dans cette partie de ’épreuve, vous appliquerez ce que vous avez appris du passage par référence, et
ferez appel & votre intuition.

4.1 Echange de valeurs

Dans cet exercice, vous devez réaliser une fonction qui échange les valeurs de deux variables de maniére
a ce qu’en sortant de cette fonction les deux variables aient effectivement changé de valeur.

Prototype :

|pub1ic static Swap(ref int a, ref int b);

4.2 Initialisation d’un tableau

Dans cet exercice, vous devez réaliser une fonction qui initialise un tableau d’entier de taille n avec la
valeur -1 et qui retourne ce tableau.

Prototype :

public static long[] InitArray(long n);

C# Info-Sup
PARTIEL 1 — Janvier 2014 EpriTA

5 Exercice 3 : Puissance 4 (Ex3.cs)

Voici maintenant ’exercice majeur de cet examen. Le titre parle de lui méme, vous allez devoir coder
un puissance 4 en console. Cet exercice se décomposera en plusieurs parties, et nous essayerons de vous
guider au fur et & mesure. Mais n’oubliez pas que comprendre son code est déja une voie vers la réussite.

Les seules fonctions autorisées durant cet exercice sont celles précisées en début de sujet. En cas d’hé-
sitation, les assistants présents dans la salle seront ravis de vous aider (aider ne signifiant pas "faire le
travail & votre place").

Les prototypes de vos fonctions devront respecter scrupuleusement ceux donnés dans ce sujet. Il n’est
cependant pas interdit de décomposer votre code en sous fonctions.

5.1 Introduction et présentation

Vous jouerez sur un plateau de dimension (i,j) de votre choix, tant que ces valeurs permettent a un des
deux joueurs de gagner. Sachez que lors de la correction, vos fonctions seront appelées avec des valeurs
différentes. Par conséquent, vous étes libre de tester votre code avec n’importe quelle valeur.

Voici la disposition de notre puissance 4 :

Deux joueurs s’affrontent sur un plateau. Le joueur 1 disposent des jetons "X’; et le joueur 2 des jetons

'O’. Le premier joueur arrivant & aligner 4 jetons dans n’importe quelle direction I’emporte.
Comme vous 'aurez deviné, les jetons étant les caractéres X’ et 'O’, le plateau sera représenté sous forme
de tableau de caractéres de dimension 2. Vous devrez implémenter le gameplay, ainsi que l'affichage du
plateau. Les indices des tableaux commencent a 0. La notation (x, y) représente la case sur la ligne x a
la colonne y.

5.2 Initialisation du tableau

Commengons doucement (tout doucement). Vous devez ici initialiser le tableau "board". Dans notre
cas, le tableau de départ, ainsi que tout les cases non occupées lors du reste de la partie seront considérés
comme des espaces (caractére ’).

Prototype :

|private static void InitGameBoard(char[,] board);

5.3 Get & Set

Voici les deux fonctions fondamentales qui vous permettrons de comprendre le fonctionnement d’un
tableau si ce n’est pas déja fait, et de le manipuler lors des différentes actions de jeu.

Tout d’abord, GetCase :
Prototype :

private static char GetCase(int c, int r, char[,] board);

Ici, ¢ et r désignent respectivement la colonne et la ligne auxquelles nous voulons accéder. Vous pouvez
considérer que r et ¢ sont des paramétres valides, respectant les limites du tableau.

Voici venue la plus importante, SetCase :
Prototype :

private static bool SetCase(int c, int r, char token, char[,] board);

Cette fonction place le caractére "token" dans le plateau de jeu "board", sur la ligne r et a la colonne
c. Elle devra renvoyer les valeurs suivantes :
— False si les paramétres donnés (c, r) sont invalides vis & vis du tableau, ou si le plateau de jeu
contient déja un jeton & cet endroit.
— True si 'insertion s’est passée sans probléme.
Veillez & ce que cette fonction ait le comportement voulu. Elle sera une des piéces maitresses de votre

puissance 4.
ACHC
2016
A
3 T

s To CooE ALONE

C# Info-Sup
PARTIEL 1 — Janvier 2014 EpriTA

5.4 Dessin

Mettre des jetons dans des cases, c’est bien, mais on s’ennuie rapidement lors d’un partiel. Voici donc
une fonction qui devrait réveiller vos talents d’artistes :
Prototype :

private static void DrawGameBoard(char[,] board);

C’est cette fonction qui vous permettra (et permettra aux assistants) de comprendre ce qui se passe
dans votre code. Attention, chaque caractére compte, et vous devrez respecter scrupuleusement le format
suivant :

X 0

0 0 X X
Chaque case devra étre représentée selon la suite de caractéres suivante : ’|’, un espace, le caractére
de la case, un espace, ’|’. AUCUNE ligne ne se finit par un espace. Ainsi, 5 est le dernier caractére de la

premiére ligne.
Pour rappel, les indices commencent & 0. Le coin haut-gauche représente ainsi la position (0,0), et le
coin bas-droit la position (5,5).

5.5 Insertion et Mécanismes de jeu
5.5.1 Insertion a la descente

Vous voici avec des jetons dans des cases et un magnifique plateau en ASCII, mais d’aussi loin que
portent vos souvenirs, le jeu consistait a laisser tomber des jetons dans des cases, et non pas & démonter
le plateau & chaque tour de jeu? Vous I’aurez voulu, voici les fonctions qui vous permettront de faire ga
"virtuellement". (PS : Le réglement du bocal interdit de démonter la RAM pour y placer vos jetons).

Selon toute logique, lorsque qu’on laisse tomber un jeton, il s’arréte un cran au desssus du dernier
jeton ajouté dans cette colonne. Voici la fonction qui calculera ceci :

Prototype :

|private static int GetPosition(int c, char[,] board);

Cette fonction qui prend en paramétres la colonne a laquelle on désire ajouter un jeton, ainsi que le
tableau en lui méme, devra retourner les valeurs suivantes :

— (-1) si La colonne est pleine, ou si le numéro de colonne est invalide.

— La position d’ajout dans la colonne si I'insertion a réussi.
En reprenant 'exemple du schéma ci-dessus, avec le tableau tel qu'il est représenté (dimensions : 6x6),
un appel a la fonction GetPosition(0, board) retournera 4.
Un appel de GetPosition(2, board) retournerait 5.
Enfin GetPosition(3, board) retournera 3.

5.5.2 Time to play

Allez on enchaine! Voici la fonction de jeu PlayToken, qui servira comme interface pour placer un
jeton dans une des colonnes.

private static bool PlayToken(int c, char token, char[,] board);

C# Info-Sup
PARTIEL 1 — Janvier 2014 EpriTA

Cette fonction devra tenter de placer le jeton "token" dans la colonne "c".

Si tout s’est bien passé, PlayToken devra renvoyer True.
En cas d’erreur (colonne remplie ou indice invalide), elle devra renvoyer False.

En cas d’erreur, vous devrez afficher sur la console les messages suivants :
— "Full column, choose a new one!" si la colonne est pleine.
— "Invalid column number, choose a new one!" Si 'indice ¢ est invalide.

5.6 And the winner is...

Allez, c’est bientdt fini! Vous avez dessiné des tableaux, placé des jetons, et vous allez maintenant
connaitre le gagnant. Le prototype de la fonction parle de lui méme :

private static char WinnerIs(char[,] board);

Voici une des fonctions les plus longues de cette partie, en terme de code et non de temps. N’hésitez
pas a la découper en plusieurs sous fonctions. Votre code vous paraitra plus clair, et vous aurez ainsi
beaucoup moins de mal & débugger vos fonctions.

Pour rappel, on considére qu'un joueur gagne si quatre de ses jetons se retrouvent alignés dans un
tableau, de maniére horizontale, verticale, ou diagonale.

Cette fonction retourne le caractére correspondant au gagnant si il y en a un ("X’ ==> Joueur 1, 'O’
==> Joueur 2). Si personne n’a encore gagné, Winnerls retourne le caractére espace ’ .
Exemples :

/* Joueur 1 gagne */
1 2 3 4 5 6

[
[
Fxrxt 1
lolxtol I | |
lolx I X1 | 10l
lolololXx | |X|

1 2 3 4 5 6

					0
I		I o X			
		X101 X1 0]			
0		0l X	X	X	
5.7 Le Jeu

Voici venu le moment de rassembler votre code, et de jouer contre vos amis (aprés 'examen). Une
partie de la boucle de jeu sera contenue dans la fonction suivante :

private static void Play(char[,] board);

Cette fonction devra suivre la procédure suivante :

1. Afficher "Player X, please choose a column : " ou "Player O, please choose a column : ", selon que

ce soit au joueur 1 ou au joueur 2 de jouer. N’oubliez pas I’espace aprés les deux points. Vous ne

devez pas revenir a la ligne.
‘cnfg
2016
A
“‘GDE ALONE

5 v cmeenis

C# Info-Sup
PARTIEL 1 — Janvier 2014 EpriTA

2. Demander & 'utilisateur de rentrer un numéro de colonne sur ’entrée standard. Pour cette étape de
lexamen et seulement cette étape, vous avez le droit a la fonction "Convert.ToInt32()". Si 'entrée
n’est pas un nombre, recommencer ’étape.

3. Utilisez les fonctions précedentes pour placez le jeton du joueur. Si le mouvement en question n’est
pas valide, retourner a 1’étape 2.

Exemple :

Player X, please choose a column : no
Player X, please choose a column : 2

5.8 La boucle est bouclée

|public static void Connect4(uint nbrow, uint nbcolumn);

Vous voila & la fin. La concrétisation de ce partiel. Voici la procédure finale qui devra étre implémentée
dans cette fonction :

1. Création du tableau et initialisation de celui-ci.(Dimensions nbrow X nbcolumn)
Dessiner la grille initiale

Afficher une ligne vide

Demander au joueur courant de jouer

Afficher une ligne vide

Dessiner la grille

A

Si un gagnant est détecté, afficher "Player X wins!" ou "Player O wins!", sinon retournez a ’étape
3. (Il'y a bien un espace entre "wins" et "!")

Nous ne vous demandons pas de gérer les cas d’égalité. Voici des exemples qui illustrent ce que votre
affichage doit rendre :

1 2 3 4 5 6

X10IlX1|O
0 0l X | X | X

Player 0, please choose a column : 5

Player 0O wins !

C# Info-Sup
PARTIEL 1 — Janvier 2014 EpriTA

Player X, please choose a column : 95
Invalid column number, choose a new one !
Player X, please choose a column : 2

1 2 3 4 5 6

5.9 Bonus

Vous pouvez implémenter tous les bonus que vous voulez, mais ceux ci doivent apparaitre dans une
classe appelée Bonus.cs, et vous devrez en faire part explicitement dans le Bonus.txt.
Les fonctions faisant partie du rendu obligatoire ne doivent en aucun cas étre modifiées!
Vous étes libres sur cette partie, néanmoins, voila des classiques :

Gestion de 1’égalité, sons, retour en arriére (selon un appui sur une touche par exemple), intelligence
artificielle, affichage du tableau amélioré, etc...
N’OUBLIEZ PAS de supprimer vos répértoires obj/ et bin/, et de suivre la structure du rendu 4 la lettre.

