C# Info-Sup
PARTIEL 1 — January 2014 EpiTA

PARTIEL C# - Sujet 2
Friday 10 January 2014, 12h30-15h30

1 Report’s consign

At the end of this partial exam , you’ll have to provide a file which respects the following
architecture :

report-partiell-login_x.zip
| -- report-partiell-login_x/
| -- AUTHORS
|-- SkillCheck
| -- SkillCheck.cs
|-- shogi.sln
| -- shogi
| -- Everything but bin/ et obj/

Don’t you forget to check the following points before you give back :

AUTHORS file

The AUTHORS file must be at the root of your report. It must contain every Authors of the
project (In this case, only you). The format for every Authors is the following :

— Character ¥’ followed by a space.

— Student’s login.

— A newlin.

Advices

Read the whole subject before you start. Once you read it, read it again. Try to make the
exercices in the order, as the difficulty is growing.
Don’t you forget to check the following points before you give back :

— The AUTHORS file must be on usual size.

— No folders bin or obj in the report.

— Function must follow the given prototype.

— Your code must compile.

Before you realize any exercise implementation do read what follows to understand you are
asked. You can write as many functions and declare as many variables as you wish. Good luck

C# Info-Sup
PARTIEL 1 — January 2014 EpiTA

2 preliminary

For this part you must give back the exercices in a file SkillCheck.cs.

2.1 1It’s just the beginning (Approximately 5 minutes)

Write the function hello which ask for your name and repeat it with hello.

Prototype :

|static void hello();

2.2 Keep going on (Approximately 15 minutes)

Write the function pow which computes x pow n, where n is a natural integer.

Prototype :

static int pow(int x, int n);

Test your might :
Optimise your code and handle the negative pow.
Tips : 2% = 22 x 22

2.3 Finally (Approximately 20 minutes)

Write the function fibonacci which computes fibonaccu at rank n in iterative way. Recursive
function are banned for this exercice.
Remind :

— fibonacci(n) = fibonacci(n - 1) 4 fibonacci(n - 2)

— fibonacci(0) = 0

— fibonacci(l) =1
Recursive function are banned for this exercice!

Prototype :

|static int fibonacci(int n);

3 Introduction

3.1 Goals

During this partial exam we’ll use tracks studied in previous TP

Use of console in C#
Loops and conditions
— Classes (Bonus)

— Boards

— The main function

C# Info-Sup
PARTIEL 1 — January 2014 EpiTA

4 Subject

4.1 The Hasami Shogi

During this partial exam you’ll have to code a modified version of Hasami Shogi , simplified
version of Shogi , Japanese chess game.

Hasami Shogi game is traditionally played in Japan . Its characteristic is to be played accor-
ding two variants, one being a position game the other a confrontation game. According to the
variant you play the target is either to build a string of five pieces (or pawns) or to capture the
pieces of the opponent. Captures are carried out by sandwiching , pieces move like the tower
in chess game ou by short jump. Then it appears compulsory to set traps to opponent pieces.E]
This is one of the most popular variant of Shogi in Japan, the Japanese chess game. The word
hasami means sandwiching which shortly describes the mean to capture a piece In this partial
you’ll be asked to implement the confrontation variant

4.2 The game

The game begins with a game board of 10*10 where each player owns a set of pieces of his
color (white or black).ﬂ At each round the player chooses a piece of his color and moves it
vertically or horizontally of as many cases as he wishes, however he can’t jump over the other
pieces.[ﬂ To capture an opponent piece you just have to sandwich it. In the traditional game you
can capture a set of pieces, this won’t be asked to you but could be a pleasant bonus as much
as capture in corners The game is over when a player has captured all the opponent pieces but
one, then the opponent becomes unable to capture any piece.

4.3 TO BE REMINDED
4.3.1 Use of console in C#

The use of the console in C# is carried out through console class Here are a few functions
that may be of any use :

1. Console.Write

2. Console.WriteLine
3. Console.Read
4

. Console.ReadLine

4.3.2 Two dimensions boards

Your game board will be represented as a two dimensions board : here is an example

int m 10;

int n = 5;

int[][] tab = new int[m][];

for (int i = 0; i < m; i++)
tab[i] = new int[n];

1. "Tt‘s a trap" Admiral Ackbar, a long time ago
2. Traditionally, 9*9 and 18 pieces for each player.
3. In traditionnal game, a jump is possible if the piece start next to the jumped piece.

C# Info-Sup
PARTIEL 1 — January 2014 EpiTA

5 Exercices

5.1 step O : create a board (Approximately 10 minutes)

Write the function init_board which creates a two dimensions board initialized with spaces.
This function must also initialize player pieces on that boards.

Prototype :

|static char[][] init_board();

5.2 Step 1 : display board (Approximately 20 minutes)

Write the function print_board which prints the board on the console.

Prototype :

static void print_board(char[][] board);

Example :

Player 1 : 0 — Player 2 : ¥

[Player 1 : Choose you next move ('AB CB’ for exemle)

Test your might : Add line and rows number, as in the exemple image.

5.3 Step 2 : Try again! (Approximately 30 minutes)

Write the function move_is_valid which makes sure that the player’s move is valid. A valid
move is an horizontal or vertical move that didn’t cross the others pieces.

Prototype :

static bool move_is_valid(char[][] board, int x1, int y1, int x2, int y2);

Test your might :
Handle the jumps like in the original game. A piece can jump only if it starts close to the jumped
piece and if the case behind is free. The piece goes to this case.

C# Info-Sup
PARTIEL 1 — January 2014 EpiTA

5.4 Step 3 : Move (Approximately estimée 5 minutes)

Write the function move_pawn which moves a piece on the board. If the move is valid then
the piece go to the new location and the older position is deleted.

Prototype :

static void move_pawn(char[][] board, int x1, int y1, int x2, int y2);

Test your might :
Handle the jump move.
5.5 Step 4 : Eat me! (Approximately estimée 15 minutes)

Write the function eat_pawn which covers the board and captures a piece if it is sandwiched
by to opponent pieces . The piece is deleted only if it is sandwiched horizontally or vertically,
we don’t care about diagonal.

Prototype :

static void eat_pawn(char[][] board);

Test your might :

Add multiple pieces capture (to surround or encircle a set of pieces deletes the whole set), and
the capture of pieces in the corners of the board (a piece is captured in a corner if it gets blocked
by two opponent pieces)

5.6 Step 5 : Mission completed (Approximately 20 minutes)

Write the function game_over which returns true if a player wins. Remind : A player has
lost when he only has one piece left on the board.

Prototype :

|static bool game_over(char[][] board);

Test your might :
Add a set of five out of the basic zone as a condition to victory (vertical horizontal or diagonal
serie).

5.7 Step 6 : Game loop (Approximately 40 minutes)

Write the function game_loop which :
— Initialize the board

— Handle player’s turn

— Get back the users entries

— Check if the move is valid

— Move a piece

Eat captured pieces.

Check if someone won.

Prototype :

C# Info-Sup
PARTIEL 1 — January 2014 EpiTA

|static void game_loop(Q);

Test your might :
Add a function newgame to start a new game after playing one.

5.8 Bonus : Make a class

To get this bonus you’ll have to declare a class Game and enter your code inside . This class
will take your board as an attribute and this will enable you to delete the board argument from
your functions. You’ll have to add the function Game hat creates a new object of the class Game
in order to begin a new game.

It’s dangerous to code alone!

