
C#

partiel 1 � Janvier 2014
Info-Sup

Epita

PARTIEL C# - Sujet 3

Vendredi 10 Janvier 2014, 16h-19h

1 Consignes de rendu

A la �n de ce TP, vous serez dans l'obligation de rendre une archive respectant l'architecture
suivante :

-- rendu -tpcs1 -login_x.zip

|-- login_x/

|-- AUTHORS

|-- README

|-- BONII.txt

|-- SkillCheck

|-- SkillCheck.cs

|-- MySmallSnake

| -- Properties/

| -- MySmallSnake.csproj

| -- Program.cs

| -- Snake.cs

| -- Position.cs

| -- MySmallSnake.sln

Bien entendu, vous devez remplacer login_x par votre propre login.

N'oubliez pas de véri�er les points suivants avant de rendre :

Fichier AUTHORS

Le �chier nommé AUTHORS doit se trouver à la racine de votre rendu. Il devra contenir tous
les auteurs du projet (en l'occurrence, VOUS seulement). Le format, pour chaque auteur, est le
suivant :

� Le caractère `*' suivi d'un espace.
� Le login de l'étudiant.
� Un retour à la ligne.

Conseils et remarques

Lisez le sujet dans son intégralité avant de commencer. Une fois que vous l'avez lu, relisez-le.
Réalisez les exercices dans l'ordre car ils sont en di�culté croissante.
N'oubliez pas de véri�er les points suivants avant de rendre :

� Le �chier AUTHORS doit être au format habituel (rappelé ci-dessus).
� Aucun dossier bin ou obj dans le rendu.
� Les fonctions demandées doivent respecter le prototype donné
� Le code doit COMPILER.

Lorsque cela n'est pas précisé, vous êtes totalement libre quant à l'implémentation des fonctions.

1

ACDC
2016

IT’S DANGEROUS TO CODE ALONE

C#

partiel 1 � Janvier 2014
Info-Sup

Epita

2 SkillCheck (60 min - 6 pts)

Cette partie a pour but de valider vos connaissances en C# dans les domaines suivants :

� Création de fonctions récursives et itératives.
� Manipulation des données de types int, double et des chaînes de caractères (string).
� Utilisation des boucles (for et while).
� Passage de variables par référence.
� Gestion des exceptions.

Tous les exercices de cette partie devront être écrits dans le �chier �SkillCheck.cs� dont le
namespace est �SkillCheck�. Pour ce faire, créez une application console nommée �SkillCheck�
(pour le namespace) et renommez le �chier �Program.cs� en �SkillCheck.cs�.
Les fonctions devront être toutes appelées dans la fonction main() avec les valeurs de votre choix.
L'a�chage de chaque fonction doit être séparé par une ligne vide.

Hello world ! (5 min - 0.5 pts)

Vous devez écrire la fonction hello_world qui a�che la chaîne de caractères �Hello World !�
à la console.
Prototype :

static void hello_world();

Puissances (15 min - 1.5 pts)

Vous devez écrire deux fonctions pow(a, n) qui retournent le résultat de a puissance n.
Une fonction sera récursive et aura le prototype suivant :

static int pow_rec(int a, int n);

L'autre fonction sera itérative et aura le prototype suivant :

static int pow_it(int a, int n);

Les deux fonctions devront évidemment renvoyer le même résultat.
Si l'entier n est négatif, vous devrez arrêter l'exécution avec une exception du type
ArgumentOutOfRangeException().

Fibonacci (10 min - 1 pt)

Vous devez écrire la fonction fibo(n) qui retourne le résultat de �bonacci n.
Prototype :

static int fibo(int n);

2

ACDC
2016

IT’S DANGEROUS TO CODE ALONE

C#

partiel 1 � Janvier 2014
Info-Sup

Epita

Rappel :

let fibo = function

| 0 -> 0

| 1 -> 1

| n -> fibo(n - 1) + fibo(n - 2);;

Si l'entier n est négatif, vous devrez arrêter l'exécution avec une exception du type
ArgumentOutOfRangeException().

Swap (10 min - 1 pt)

Ecrivez la fonction swap(a, b) prenant en paramètres 2 entiers a et b passés en référence et
qui échange les contenus de a et de b.
Prototype :

static void swap(int ref a, int ref b);

Rotation (20 min - 2 pts)

Ecrivez la fonction rot(char c, int n) qui e�ectue une rotation de n sur le caractère c. Par
exemple, si le caractère passé en argument est 'a' et qu'on lui applique un décalage de 13, la
fonction retourne 'n'.
Prototype :

static char rot(char c, int n);

La rotation ne sera appliquée que sur les caractères alphabétiques.
Conseil : pour tester votre fonction, utilisez str = rot(rot(str, 13), 13)

Ecrivez la fonction rotn(string str, int n) qui e�ectue une rotation de n sur tous les caractères
de la chaine donnée en paramètre.
Prototype :

static string rotn(string str, int n);

Conseil :
Utilisez un objet de type StringBuilder (contenu dans l'espace de noms System.Text) pour
construire petit à petit une chaîne de caractères. Les deux méthodes à retenir sont Append qui
ajoute une chaîne de caractères à la suite des autres, et ToString qui sert à obtenir la chaîne de
caractères complète.

Si l'entier n est négatif, vous devrez arrêter l'exécution avec une exception du type
ArgumentOutOfRangeException().

3

ACDC
2016

IT’S DANGEROUS TO CODE ALONE

C#

partiel 1 � Janvier 2014
Info-Sup

Epita

3 Partie II : MySmallSnake

Cette partie a pour but de valider vos connaissances en C# dans les domaines suivants :

� Utilisation avancée de la console sous Windows.
� Utilisation de boucles, fonctions et variables.

Nous allons créer ensemble un jeu vidéo ! Au terme de cette partie, nous aurons un jeu en
console représentant un serpent qui bouge à l'écran, contrôlé par le joueur (nous !) et qui mangera
des pommes à l'in�ni. Bien sûr, mode console oblige, tout cela sera sous forme de caractères !
Par ailleurs, pour garder une di�culté raisonnable, la queue du serpent ne sera pas à faire... sauf
si vous le souhaitez (voir partie Bonii).

3.1 Bien démarrer

Commençons par créer un nouveau projet console nommé �MySmallSnake�. Ajoutons une
boucle while(true) qui ne fait rien dans le main. Parfait ! Maintenant lorsqu'on lance le pro-
gramme, la console ne se ferme pas !

3.2 La gestion du Serpent

A�n de garder notre projet lisible et propre, nous allons travailler dans di�érents �chiers. Pour
faire cela, nous allons d'abord changer la ligne :

class Program

pour qu'elle devienne

partial class Program

Cela nous permettra de répartir le programme sur plusieur �chiers.
Maintenant, créons la classe �Snake.cs�. À nouveau, changez la ligne

class Snake

pour qu'elle devienne

partial class Program

C'est donc dans �Snake.cs� que vous écrirez toutes les fonctions de gestion du serpent.

Le serpent devra constamment avancer dans une seule direction. Sa direction pourra changer
si l'utilisateur appuie sur une touche. Créez donc trois variables :

� snakePosX qui sera un entier représentant la position du joueur en X
� snakePosY qui sera un entier représentant la position du joueur en Y
� snakeDir qui sera une string qui pourra prendre les valeurs "up", "down", "right" ou

"left" selon les déplacements du joueur.

Le serpent a ainsi une direction et une position qui lui est propre.
Pro�tons-en pour écrire une fonction qui initialisera la position au milieu de l'écran, et la direction
à droite.

static void snake_init(int x, int y);

4

ACDC
2016

IT’S DANGEROUS TO CODE ALONE

C#

partiel 1 � Janvier 2014
Info-Sup

Epita

Maintenant, vous allez devoir créer plusieurs fonctions qui seront appelées dans la boucle de
jeu et qui manipuleront le serpent.

static void snake_go();

static void snake_turn(ConsoleKey key);

static bool snake_collision(int positionX, int positionY);

static void snake_draw();

La fonction snake_go() fait avancer la position du serpent en fonction de sa direction.

La fonction snake_turn(ConsoleKey key) modi�e la direction selon la touche sur laquelle
l'utilisateur a appuyé (passée en argument).

La fonction snake_collision(int positionX, int positionY) compare la position passée
en argument et celle du joueur et renvoie vrai si les deux position sont égales. Faux, sinon.

La fonction snake_draw() dessine le serpent à sa position : elle doit déplacer le curseur puis
écrire le caractère correspondant, qui devrait être `X'.

3.3 L'initialisation du jeu

L'initialisation du jeu doit se trouver hors de la boucle de jeu. Elle va nous permettre d'ini-
tialiser les di�érents éléments et notamment, d'assigner une position à la pomme.
Pour cela, retournons donc dans le �chier Program.cs et créons d'abord deux variables :

static int applePosX;

static int applePosY;

Pour que le jeu soit ludique, il faut que la pomme soit positionnée de manière aléatoire. Pour
faire cela, vous allez devoir utiliser la classe Random :

static Random rand = new Random();

Il vous su�t ensuite d'utiliser rand.Next(int maxValue) pour générer des nombres aléatoires.

Finalement, n'oubliez pas d'initialiser le joueur en faisant un simple appel à la fonction asso-
ciée au serpent : snake_init.
Conseil :
Utilisez la valeur maximale de la fonction rand.Next() pour éviter de placer la pomme hors de
la fenêtre de la console.

3.4 La boucle de jeu

Maintenant que vous avez tout ce qu'il faut, il ne reste plus qu'à assembler les pièces du puzzle.
Pour cela, il faut tout regrouper dans la boucle de jeu puisque c'est là que tout se passera.
Conseil :
Vous pouvez diviser la boucle de jeu en plusieurs fonctions comme, par exemple : update(),
draw(), etc.

5

ACDC
2016

IT’S DANGEROUS TO CODE ALONE

C#

partiel 1 � Janvier 2014
Info-Sup

Epita

Les di�érentes étapes à e�ectuer sont :

3.4.1 Véri�er s'il y a collision entre le joueur et la pomme

Utilisez la fonction associée au serpent : snake_collision. S'il y a e�ectivement collision, il
vous faudra déplacer la pomme à un autre endroit aléatoire : réinitialiser l'élément, en somme !

3.4.2 Faire avancer le joueur

Utilisez la fonction associée au serpent.

3.4.3 Récupérer les entrées du joueur

Pour cela, vous devez utiliser les méthodes et les attributs de la classe console disponible :
Console.KeyAvailable et Console.ReadKey(true) vous seront utiles ! Lisez bien la documen-
tation disponible dans Visual Studio. Vous pouvez alors utiliser la fonction associée au serpent.

3.4.4 Dessiner le jeu

Videz la console, utilisez fonction associée au serpent pour dessiner le joueur puis, de la même
manière, dessinez la pomme.

3.4.5 Attendre

En e�et, si vous lancez le jeu tel quel, vous ne verrez pas grand-chose, si ce n'est des caractères
se déplaçant très vite (trop vite, d'ailleurs). Pour résoudre ce problème, il su�t de mettre le jeu en
pause pendant un court laps de temps. Pour cela, utilisons la fonction Sleep(int milliseconds

Timeout) qui, comme son nom l'indique, endort le processus.

System.Threading.Thread.Sleep(int milliseconds Timeout);

Réglez le Timeout à 50 millisecondes pour un résultat convenable.

3.5 Bonii

Voilà ! Votre jeu est �ni. . . Mais l'est-il vraiment ?

En e�et, il reste bien trop simple alors à vous d'ajouter le nécessaire pour le compléter. Pour
cette partie, vous avez carte blanche : faîtes ce que bon vous semble, tant que ça n'empiète pas
sur la partie obligatoire.
Chaque bonus que vous réalisez doit être courtement expliqué dans un �chier �BONII.txt�.

Quelques idées de bonii :

� Limiter les déplacements du joueur à l'intérieur de la fenêtre pour qu'il ne puisse pas
sortir.

� Ajouter un score, a�ché dans la console, qui augmente à chaque fois qu'une pomme est
ramassée.

� Multiplier les pommes dans le jeu !
� Ajouter un game over (quand le joueur touche les limites, par exemple).
� Ajouter la queue du serpent !

6

ACDC
2016

IT’S DANGEROUS TO CODE ALONE

