CH# Info-Sup
PARTIEL 1 — Janvier 2014 EpiTA

PARTIEL C# - Sujet 3
Vendredi 10 Janvier 2014, 16h-19h

1 Consignes de rendu

A la fin de ce TP, vous serez dans I'obligation de rendre une archive respectant I’architecture
suivante :

-- rendu-tpcsl-login_x.zip
|-- login_x/
| -- AUTHORS
| -- README
| -- BONII.txt
| -- SkillCheck
|[-- SkillCheck.cs
| -- MySmallSnake
| -- Properties/
| -- MySmallSnake.csproj
| -- Program.cs
| -- Snake.cs
| -- Position.cs
-- MySmallSnake.sln

Bien entendu, vous devez remplacer login_x par votre propre login.

N’oubliez pas de vérifier les points suivants avant de rendre :

Fichier AUTHORS

Le fichier nommé AUTHORS doit se trouver & la racine de votre rendu. Il devra contenir tous
les auteurs du projet (en I'occurrence, VOUS seulement). Le format, pour chaque auteur, est le
suivant, :

— Le caractére ‘*’ suivi d’un espace.

— Le login de I’étudiant.

— Un retour a la ligne.

Conseils et remarques

Lisez le sujet dans son intégralité avant de commencer. Une fois que vous 'avez lu, relisez-le.
Reéalisez les exercices dans 'ordre car ils sont en difficulté croissante.
N’oubliez pas de vérifier les points suivants avant de rendre :
— Le fichier AUTHORS doit étre au format habituel (rappelé ci-dessus).
Aucun dossier bin ou obj dans le rendu.
Les fonctions demandées doivent respecter le prototype donné
Le code doit COMPILER.
Lorsque cela n’est pas précisé, vous étes totalement libre quant & I'implémentation des fonctions.

CH# Info-Sup
PARTIEL 1 — Janvier 2014 EpiTA

2 SkillCheck (60 min - 6 pts)

Cette partie a pour but de valider vos connaissances en C# dans les domaines suivants :

— Création de fonctions récursives et itératives.

— Manipulation des données de types int, double et des chaines de caractéres (string).
— Utilisation des boucles (for et while).

— Passage de variables par référence.

— Gestion des exceptions.

Tous les exercices de cette partie devront étre écrits dans le fichier “SkillCheck.cs” dont le
namespace est “SkillCheck”. Pour ce faire, créez une application console nommée “SkillCheck”
(pour le namespace) et renommez le fichier “Program.cs” en “SkillCheck.cs”.

Les fonctions devront étre toutes appelées dans la fonction main() avec les valeurs de votre choix.
L’affichage de chaque fonction doit étre séparé par une ligne vide.

Hello world! (5 min - 0.5 pts)

Vous devez écrire la fonction hello_world qui affiche la chaine de caractéres “Hello World !”
& la console.
Prototype :

static void hello_world();

Puissances (15 min - 1.5 pts)

Vous devez écrire deux fonctions pow(a, n) qui retournent le résultat de a puissance n.
Une fonction sera récursive et aura le prototype suivant :

|static int pow_rec(int a, int n);

L’autre fonction sera itérative et aura le prototype suivant :

|static int pow_it(int a, int n);

Les deux fonctions devront évidemment renvoyer le méme résultat.
Si 'entier n est négatif, vous devrez arréter ’exécution avec une exception du type
ArgumentOutOfRangeException().

Fibonacci (10 min - 1 pt)

Vous devez écrire la fonction fibo(n) qui retourne le résultat de fibonacci n.
Prototype :

|static int fibo(int n);

CH# Info-Sup

PARTIEL 1 — Janvier 2014 EpiTA
Rappel :
let fibo = function
| -> 0
| > 1
I

B L, O

-> fibo(n - 1) + fibo(n - 2);;

Si 'entier n est négatif, vous devrez arréter I’exécution avec une exception du type
ArgumentOutOfRangeException().

Swap (10 min - 1 pt)

Ecrivez la fonction swap(a, b) prenant en parameétres 2 entiers a et b passés en référence et
qui échange les contenus de a et de b.
Prototype :

static void swap(int ref a, int ref b);

Rotation (20 min - 2 pts)

Ecrivez la fonction rot(char ¢, int n) qui effectue une rotation de n sur le caractére c. Par
exemple, si le caractére passé en argument est 'a’ et qu'on lui applique un décalage de 13, la
fonction retourne 'n’.

Prototype :

|static char rot(char c, int n);

La rotation ne sera appliquée que sur les caractéres alphabétiques.
Conseil : pour tester votre fonction, utilisez str = rot(rot(str, 13), 13)

Ecrivez la fonction rotn(string str, int n) qui effectue une rotation de n sur tous les caractéres
de la chaine donnée en parameétre.
Prototype :

static string rotn(string str, int n);

Conseil :
Utilisez un objet de type StringBuilder (contenu dans l’espace de noms System.Text) pour
construire petit a petit une chaine de caractéres. Les deux méthodes a retenir sont Append qui
ajoute une chaine de caractéres & la suite des autres, et ToString qui sert a obtenir la chaine de
caractéres compléte.

Si I'entier n est négatif, vous devrez arréter ’exécution avec une exception du type
ArgumentOutOfRangeException().

CH# Info-Sup
PARTIEL 1 — Janvier 2014 EpiTA

3 Partie II : MySmallSnake

Cette partie a pour but de valider vos connaissances en C# dans les domaines suivants :

— Utilisation avancée de la console sous Windows.
— Utilisation de boucles, fonctions et variables.

Nous allons créer ensemble un jeu vidéo! Au terme de cette partie, nous aurons un jeu en
console représentant un serpent qui bouge a ’écran, controlé par le joueur (nous!) et qui mangera
des pommes & l'infini. Bien stir, mode console oblige, tout cela sera sous forme de caractéres!
Par ailleurs, pour garder une difficulté raisonnable, la queue du serpent ne sera pas a faire... sauf
si vous le souhaitez (voir partie Bonii).

3.1 Bien démarrer

Commengons par créer un nouveau projet console nommé ‘“MySmallSnake’’. Ajoutons une
boucle while(true) qui ne fait rien dans le main. Parfait ! Maintenant lorsqu’on lance le pro-
gramme, la console ne se ferme pas!

3.2 La gestion du Serpent

Afin de garder notre projet lisible et propre, nous allons travailler dans différents fichiers. Pour
faire cela, nous allons d’abord changer la ligne :

[class Program

pour qu’elle devienne

|[partial class Program

Cela nous permettra de répartir le programme sur plusieur fichiers.
Maintenant, créons la classe “‘Snake.cs’’. A nouveau, changez la ligne

[class Snake

pour qu’elle devienne

|[partial class Program

C’est donc dans “‘Snake.cs’ que vous écrirez toutes les fonctions de gestion du serpent.

Le serpent devra constamment avancer dans une seule direction. Sa direction pourra changer
si 'utilisateur appuie sur une touche. Créez donc trois variables :

— snakePosX qui sera un entier représentant la position du joueur en X

— snakePosY qui sera un entier représentant la position du joueur en Y

— snakeDir qui sera une string qui pourra prendre les valeurs "up", "down", "right" ou
"left" selon les déplacements du joueur.

Le serpent a ainsi une direction et une position qui lui est propre.
Profitons-en pour écrire une fonction qui initialisera la position au milieu de ’écran, et la direction
& droite.

static void snake_init(int x, int y);

CH# Info-Sup
PARTIEL 1 — Janvier 2014 EpiTA

Maintenant, vous allez devoir créer plusieurs fonctions qui seront appelées dans la boucle de
jeu et qui manipuleront le serpent.

static void snake_go();

static void snake_turn(ConsoleKey key);

static bool snake_collision(int positionX, int positionY);
static void snake_draw();

La fonction snake_go() fait avancer la position du serpent en fonction de sa direction.

La fonction snake_turn(ConsoleKey key) modifie la direction selon la touche sur laquelle
l'utilisateur a appuyé (passée en argument).

La fonction snake_collision(int positionX, int positionY) compare la position passée
en argument et celle du joueur et renvoie vrai si les deux position sont égales. Faux, sinon.

La fonction snake_draw() dessine le serpent & sa position : elle doit déplacer le curseur puis
écrire le caractére correspondant, qui devrait étre ‘X’.

3.3 L’initialisation du jeu

L’initialisation du jeu doit se trouver hors de la boucle de jeu. Elle va nous permettre d’ini-
tialiser les différents éléments et notamment, d’assigner une position a la pomme.
Pour cela, retournons donc dans le fichier Program.cs et créons d’abord deux variables :

static int applePosX;
static int applePosY;

Pour que le jeu soit ludique, il faut que la pomme soit positionnée de maniére aléatoire. Pour
faire cela, vous allez devoir utiliser la classe Random :

|static Random rand = new Random();

1l vous suffit ensuite d’utiliser rand.Next (int maxValue) pour générer des nombres aléatoires.

Finalement, n’oubliez pas d’initialiser le joueur en faisant un simple appel a la fonction asso-
ciée au serpent : snake_init.
Conseil :
Utilisez la valeur maximale de la fonction rand.Next () pour éviter de placer la pomme hors de
la fenétre de la console.

3.4 La boucle de jeu

Maintenant que vous avez tout ce qu’il faut, il ne reste plus qu’a assembler les piéces du puzzle.
Pour cela, il faut tout regrouper dans la boucle de jeu puisque c’est la que tout se passera.
Conseil :

Vous pouvez diviser la boucle de jeu en plusieurs fonctions comme, par exemple : update(),
draw(), etc.

CH# Info-Sup
PARTIEL 1 — Janvier 2014 EpiTA

Les différentes étapes & effectuer sont :

3.4.1 Vérifier s’il y a collision entre le joueur et la pomme

Utilisez la fonction associée au serpent : snake_collision. S’il y a effectivement collision, il
vous faudra déplacer la pomme & un autre endroit aléatoire : réinitialiser ’élément, en somme !
3.4.2 Faire avancer le joueur

Utilisez la fonction associée au serpent.

3.4.3 Récupérer les entrées du joueur

Pour cela, vous devez utiliser les méthodes et les attributs de la classe console disponible :
Console.KeyAvailable et Console.ReadKey(true) vous seront utiles! Lisez bien la documen-
tation disponible dans Visual Studio. Vous pouvez alors utiliser la fonction associée au serpent.

3.4.4 Dessiner le jeu
Videz la console, utilisez fonction associée au serpent pour dessiner le joueur puis, de la méme
maniére, dessinez la pomme.

3.4.5 Attendre

En effet, si vous lancez le jeu tel quel, vous ne verrez pas grand-chose, si ce n’est des caractéres
se déplagant trés vite (trop vite, d’ailleurs). Pour résoudre ce probléme, il suffit de mettre le jeu en
pause pendant un court laps de temps. Pour cela, utilisons la fonction Sleep(int milliseconds
Timeout) qui, comme son nom l'indique, endort le processus.

|System.Threading.Thread.Sleep(int milliseconds Timeout);

Réglez le Timeout & 50 millisecondes pour un résultat convenable.

3.5 Bonii

Voila! Votre jeu est fini... Mais I'est-il vraiment ?

En effet, il reste bien trop simple alors & vous d’ajouter le nécessaire pour le compléter. Pour
cette partie, vous avez carte blanche : faites ce que bon vous semble, tant que ¢a n’empiéte pas
sur la partie obligatoire.

Chaque bonus que vous réalisez doit étre courtement expliqué dans un fichier “BONII. txt”.

Quelques idées de bonii :

— Limiter les déplacements du joueur & lintérieur de la fenétre pour qu’il ne puisse pas
sortir.

— Ajouter un score, affiché dans la console, qui augmente & chaque fois qu'une pomme est
ramasseée.

— Multiplier les pommes dans le jeu!

— Ajouter un game over (quand le joueur touche les limites, par exemple).

— Ajouter la queue du serpent !

