
Caml
practical #3 – oct. 2013

Undergraduate (1st year)
Epita

Game of life - v1
Introduction to the Game of Life

http://en.wikipedia.org/wiki/Conway’s_Game_of_Life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie

1 Preliminaries

Rules

Cells are represented by integers in the board.

This first version uses the following definitions (to simplify later modifications):

let cell_color = function
| 0 -> white (* need Graphics to be opened *)
| _ -> black ;;

let new_cell = 1 ;; (* alive cell *)
let empty = 0 ;;
let size_cell = 10 ;; (* cell size in pixels *)

At each step in time (generation), the following transitions occur:

• Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction.

• Any live cell with two or three live neighbours lives on to the next generation. Otherwise it dies.

1. Write the function is_alive that tests whether a given cell is alive.
val is_alive : int -> bool = <fun>

2. Write the function rules that takes a cell and its number of neighbours as parameters. It returns
the new state of the cell.
val rules : int -> int -> int = <fun>

Lists for the board

The board will be represented by a list of integer lists (called matrix ).

1. Write a function that generates a square size matrix filled with a given value.
Application example:

] gen_board 5 0;;
- : int list list =
[[0; 0; 0; 0; 0]; [0; 0; 0; 0; 0]; [0; 0; 0; 0; 0]; [0; 0; 0; 0; 0];
[0; 0; 0; 0; 0]]

You can first write a function that returns a new list filled with a given value.

2. Write the function get_cell (x,y) board that returns the value at position (x,y) in the board.
(You can first write a function the gives the nth element of a list.). The value empty has to be
returned if the element does not exist.
val get_cell : int * int -> int list list -> int = <fun>

3. Write the function put_cell cell (x,y) board that replaces the value at (x,y) in board by the
value cell.
val put_cell : ’a -> int * int -> ’a list list -> ’a list list = <fun>

4. Write the function count_neighbours (x,y) board that returns the number of alive cells (use
is_alive) around the cells at position (x,y) in board.
val count_neighbours : int * int -> int list list -> int = <fun>

1

http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie


Caml
practical #3 – oct. 2013

Undergraduate (1st year)
Epita

Graphics functions

Reminder: First you will need to load the module (only once) and open the graphics window:

#load "graphics.cma" ;; (* Load the library *)
open Graphics ;; (* Open the module *)
open_graph "";; (* Open the window *)

The graphics window size can be given as a string parameter. The following function opens a size×size
window:

let open_window size = open_graph (string_of_int size ^ "x" ^ string_of_int (size+20));;

Some useful functions (extract from manuel1):

val clear_graph : unit -> unit
Erase the graphics window.

val rgb : int -> int -> int -> color
rgb r g b returns the integer encoding the color with red component r, green component g, and blue

component b. r, g and b are in the range 0..255.

Example: let grey = rgb 127 127 127 ;;

val set_color : color -> unit
Set the current drawing color.

val draw_rect : int -> int -> int -> int -> unit
draw_rect x y w h draws the rectangle with lower left corner at x, y, width w and height h. The

current point is unchanged. Raise Invalid_argument if w or h is negative.

val fill_rect : int -> int -> int -> int -> unit
fill_rect x y w h fills the rectangle with lower left corner at x,y, width w and height h, with the

current color. Raise Invalid_argument if w or h is negative.

The "board" is a size × size matrix that will be displayed on the graphics window: it requires to
make the correspondence between coordinates in the matrix and those in the graphics window.

1. Write a function that draws a cell (dead or alive) given its coordinates (on the board), its size and
its color: a grey square with given size filled with color.

val draw_cell : int * int -> int -> Graphics.color -> unit = <fun>

2. Write the function draw_board: it takes as parameters the board (the matrix), the cell size (pixels),
and draws the board on the graphics window (don’t forget to clear it. . . ).

val draw_board : int list list -> int -> unit = <fun>

1http://caml.inria.fr/pub/docs/manual-ocaml/libref/Graphics.html

2

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Graphics.html


Caml
practical #3 – oct. 2013

Undergraduate (1st year)
Epita

2 The game

1. Write the function seed_life board size count thats places count new cells randomly (use the
function Random.int) in the size × size matrix board.

val seed_life : int list list -> int -> int -> int list list = <fun>

2. Write the function new_board that returns a new board from its size and the number of cells.

val new_board : int -> int -> int list list = <fun>

3. Write the function next_generation that applies the game of life rules to every cell in the board
given as parameter. Its returns the new board.

val next_generation : int list list -> int list list = <fun>

4. Write the function game board n that applies the game of life rules during n generations on board.
It draws the board at each generation.

val game : int list list -> int -> unit = <fun>

5. Finally, write the function new_game that creates a new game from the size of the board, the number
of cells et the number of generations.

val new_game : int -> int -> int -> unit = <fun>

3 Bonus

Some add-ons

1. Instead of running the game during a given number of generations, it is possible to let it run as
long as alive cells remain.

• Write the function remaining that tests whether alive cells remain in the given board.

• Change the function new_game: if the generation number given as parameter is 0, the game
will continue as long as alive cells remain.

2. There exist some known "patterns" (the clown, the glider gun). They can be "loaded" from a list
of cell coordinates (see examples online).

• Write a function init_pattern pattern size that creates a new board with the given size
from a list of cell coordinates (pattern).

• Change the function new_game (or write a new one new_game_2) so that it takes the board,
its size and the generation number as parameters.

Optimisations

1. Write again the last functions in order to avoid drawing the whole board at each generation.

2. count_neighbours: write this function without using get_cell (it must traverse the matrix only
once).

Choices and compilation

Use the input/output functions (read_int, print_...) to write a compiled version that gives the choice
between the different versions of your game.

Have a look at the online example.

The online manual should be useful here!

3


	Preliminaries
	The game
	Bonus

