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Jeu de la vie - v1

Introduction du Jeu de la Vie (Game of Life)
http://en.wikipedia.org/wiki/Conway’s_Game_of_Life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie

1 Préliminaires

Les régles

Les cellules seront représentées dans le plateau de jeu par des entiers.

Pour cette premiére version, les définitions suivantes sont données (pour simplifier les modifications
ultérieures) :

let cell_color = function
| 0 -> white (* nécessite Uouverture de Graphics *)
| _ -> black ;;

let new_cell = 1 ;;  (* cellule vivante *)

let empty = O

let size_cell

B

10 ;; (* la taille en pizels d’une cellule *)

1| -

A chaque étape (génération), I'évolution d’une cellule est entiérement déterminée par I’état de ses huit
voisines de la fagon suivante :

— Une cellule morte possédant exactement trois voisines vivantes devient vivante (elle nait).
— Une cellule vivante possédant deux ou trois voisines vivantes le reste, sinon elle meurt (elle disparait).

1. Ecrire la fonction is_alive qui prend une cellule en paramétre et indique si celle-ci est vivante.
val is_alive : int -> bool = <fun>

2. Ecrire la fonction rules qui & partir d’une cellule et de son nombre de voisines retourne son nouvel
état.
val rules : int -> int -> int = <fun>

Listes simples — listes de listes

Le plateau sera représenté par une liste de listes d’entiers (appelée matrice ici).

1. Ecrire une fonction qui retourne une matrice de taille n x n remplie d’une valeur donnée.

Ezxemple d’application :
f gen_board 5 0;;

- : int list list =
[[0; O0; O0; 0; 0]; [0; O; O; O; O]; [0; O; O; O; 0]; [0; O; O; O; 0OJ;
[0; 0; 0; 0; 011 . . .
n peut commencer par écrire une fonction qui retourne une liste de n valeurs v.
O t ¢ fonct t liste d 1

2. Ecrire la fonction get_cell (x,y) board qui retourne la valeur en position (x,y) dans la matrice
board. (On peut ici aussi d’abord écrire la fonction qui retourne le i*™¢ élément d’une liste). La
fonction retourne la valeur empty si I’élément n’existe pas.
val get_cell : int * int -> int list list -> int = <fun>

3. Ecrire la fonction put_cell cell (x,y) board qui remplace la valeur en (x,y) dans la matrice
board par la valeur cell.
val put_cell : ’a -> int * int -> ’a list list -> ’a list list = <fun>

4. Ecrire la fonction count_neighbours (x,y) board qui retourne le nombre de cellules vivantes
(utiliser is_alive) autour de la cellule en (x,y) dans board.
val count_neighbours : int * int -> int list list -> int = <fun>


http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie
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Fonctions graphiques

Rappels : Tout d’abord, il faut charger le module (& ne faire qu’une seule fois) et ouvrir la fenétre
de sortie :

#load "graphics.cma" ;; (* Load the library *)
open Graphics ;; (* Open the module *)
open_graph "";; (* Open the window *)

On peut donner en parameétres les dimensions de la fenétre de sortie (une chaine de caractéres). La
fonction suivante permet d’ouvrir une fenétre de dimensions size x size :

let open_window size = open_graph (string of_int size ~ "x" ~ string_of_int (size+20));;

Quelques fonctions utiles (extraits du manuelE[) :

val clear_graph : unit -> unit
Erase the graphics window.

val rgb : int -> int -> int -> color
rgb r g breturns the integer encoding the color with red component r, green component g, and blue
component b. 7, g and b are in the range 0. .255.

Exemple : let grey = rgb 127 127 127 ;;

val set_color : color -> unit
Set the current drawing color.

val draw_rect : int -> int -> int -> int -> unit
draw_rect x y w h draws the rectangle with lower left corner at x,y, width w and height h. The
current point is unchanged. Raise Invalid_argument if w or h is negative.

val fill _rect : int -> int -> int -> int -> unit
fill_rect x y w h fills the rectangle with lower left corner at x,y, width w and height h, with the
current color. Raise Invalid argument if w or h is negative.

Le "plateau" de jeu est une matrice size x size qui sera affichée sur la fenétre graphique : il faut faire
la correspondance entre les coordonnées dans le plateau et les coordonnées sur la fenétre graphique.

1. Ecrire une fonction qui dessine une cellule (vivante ou morte) & partir de ses coordonnées (sur le
plateau de jeu), sa taille (en pixels) et sa couleur : un carré de coté size entouré de gris.

val draw_cell : int * int -> int -> Graphics.color -> unit = <fun>

2. Ecrire la fonction draw_board qui prend en paramétre la matrice représentant le plateau de jeu,
la taille (en pixels) des cellules, et dessine le plateau sur la fenétre graphique (penser a effacer la
fenétre. . .).

val draw_board : int list list -> int -> unit = <fun>

1. http://caml.inria.fr/pub/docs/manual-ocaml/libref/Graphics.html


http://caml.inria.fr/pub/docs/manual-ocaml/libref/Graphics.html
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2 Le jeu

1. Ecrire la fonction seed_life board size count qui place aléatoirement (utiliser la fonction Random. int)
count nouvelles cellules dans le plateau board de taille size x size.

val seed_life : int list list -> int -> int -> int list list = <fun>

2. Ecrire la fonction new_board qui crée un nouveau plateau de jeu a partir de sa taille et du nombre
de cellules & placer.

val new_board : int -> int -> int list list = <fun>

3. Ecrire la fonction next_generation qui & partir du plateau applique les régles du jeu de la vie a
toutes les cellules et retourne le nouveau plateau.

val next_generation : int list list -> int list list = <fun>

4. Ecrire la fonction game board n qui applique les régles du jeu de la vie sur n générations au plateau
board et dessine le plateau & chaque génération.

val game : int list list -> int -> unit = <fun>

5. Ecrire enfin la fonction new_game qui crée un nouveau jeu a partir de la taille du plateau, du nombre
de cellules initiales et du nombre de générations.

val new_game : int -> int -> int -> unit = <fun>

3 Bonus

Quelques ajouts

1. Plutét que de donner le nombre de générations en paramétres, on peut laisser le jeu tourner tant
qu’il reste des cellules vivantes.
— Ecrire la fonction remaining qui teste s'il reste des cellules vivantes dans un plateau donné.
— Modifier la fonction new_game : si le nombre de générations passé est 0, le jeu tournera tant qu’il
restera des cellules.

2. Il existe des "schémas" connus (le clown, le canon a planeurs). On peut les "charger" & partir d’une
liste de coordonnées (voir exemples en ligne).
— Ecrire une fonction init_pattern pattern size qui crée un nouveau plateau de jeu de taille
size & partir de la liste des coordonnées des cellules (pattern).

— Modifier la fonction new_game (ou écrire la fonction new_game_2) afin qu’elle prenne en paramétre
le plateau de jeu, sa taille et le nombre de générations.

Optimisations
1. Réécrire les derniéres fonctions en évitant de redessiner la plateau a chaque génération.

2. count_neighbours : écrire cette fonction sans utiliser get_cell (elle ne doit faire qu'un parcours
de la matrice).

Choix et compilation

Utilisez les fonctions d’entrées sorties (read_int, print_...) pour écrire une version compilée qui
laisse le choix entre les différentes versions du jeu.

Voir un exemple en ligne.

Le manuel en ligne risque de vous étre utile!
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