CAML Info-Sup
TP 3 — oct. 2013 EpiTA

Jeu de la vie - v1

Introduction du Jeu de la Vie (Game of Life)
http://en.wikipedia.org/wiki/Conway’s_Game_of_Life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie

1 Préliminaires

Les régles

Les cellules seront représentées dans le plateau de jeu par des entiers.

Pour cette premiére version, les définitions suivantes sont données (pour simplifier les modifications
ultérieures) :

let cell_color = function
| 0 -> white (* nécessite Uouverture de Graphics *)
| _ -> black ;;

let new_cell = 1 ;; (* cellule vivante *)

let empty = O

let size_cell

B

10 ;; (* la taille en pizels d’une cellule *)

1| -

A chaque étape (génération), I'évolution d’une cellule est entiérement déterminée par I’état de ses huit
voisines de la fagon suivante :

— Une cellule morte possédant exactement trois voisines vivantes devient vivante (elle nait).
— Une cellule vivante possédant deux ou trois voisines vivantes le reste, sinon elle meurt (elle disparait).

1. Ecrire la fonction is_alive qui prend une cellule en paramétre et indique si celle-ci est vivante.
val is_alive : int -> bool = <fun>

2. Ecrire la fonction rules qui & partir d’une cellule et de son nombre de voisines retourne son nouvel
état.
val rules : int -> int -> int = <fun>

Listes simples — listes de listes

Le plateau sera représenté par une liste de listes d’entiers (appelée matrice ici).

1. Ecrire une fonction qui retourne une matrice de taille n x n remplie d’une valeur donnée.

Ezxemple d’application :
f gen_board 5 0;;

- : int list list =
[[0; O0; O0; 0; 0]; [0; O; O; O; O]; [0; O; O; O; 0]; [0; O; O; O; 0OJ;
[0; 0; 0; 0; 011 . . .
n peut commencer par écrire une fonction qui retourne une liste de n valeurs v.
O t ¢ fonct t liste d 1

2. Ecrire la fonction get_cell (x,y) board qui retourne la valeur en position (x,y) dans la matrice
board. (On peut ici aussi d’abord écrire la fonction qui retourne le i*™¢ élément d’une liste). La
fonction retourne la valeur empty si I’élément n’existe pas.
val get_cell : int * int -> int list list -> int = <fun>

3. Ecrire la fonction put_cell cell (x,y) board qui remplace la valeur en (x,y) dans la matrice
board par la valeur cell.
val put_cell : ’a -> int * int -> ’a list list -> ’a list list = <fun>

4. Ecrire la fonction count_neighbours (x,y) board qui retourne le nombre de cellules vivantes
(utiliser is_alive) autour de la cellule en (x,y) dans board.
val count_neighbours : int * int -> int list list -> int = <fun>

http://en.wikipedia.org/wiki/Conway's_Game_of_Life
http://fr.wikipedia.org/wiki/Jeu_de_la_vie

CAML Info-Sup
TP 3 — oct. 2013 EpiTA

Fonctions graphiques

Rappels : Tout d’abord, il faut charger le module (& ne faire qu’une seule fois) et ouvrir la fenétre
de sortie :

#load "graphics.cma" ;; (* Load the library *)
open Graphics ;; (* Open the module *)
open_graph "";; (* Open the window *)

On peut donner en parameétres les dimensions de la fenétre de sortie (une chaine de caractéres). La
fonction suivante permet d’ouvrir une fenétre de dimensions size x size :

let open_window size = open_graph (string of_int size ~ "x" ~ string_of_int (size+20));;

Quelques fonctions utiles (extraits du manuelE[) :

val clear_graph : unit -> unit
Erase the graphics window.

val rgb : int -> int -> int -> color
rgb r g breturns the integer encoding the color with red component r, green component g, and blue
component b. 7, g and b are in the range 0. .255.

Exemple : let grey = rgb 127 127 127 ;;

val set_color : color -> unit
Set the current drawing color.

val draw_rect : int -> int -> int -> int -> unit
draw_rect x y w h draws the rectangle with lower left corner at x,y, width w and height h. The
current point is unchanged. Raise Invalid_argument if w or h is negative.

val fill _rect : int -> int -> int -> int -> unit
fill_rect x y w h fills the rectangle with lower left corner at x,y, width w and height h, with the
current color. Raise Invalid argument if w or h is negative.

Le "plateau" de jeu est une matrice size x size qui sera affichée sur la fenétre graphique : il faut faire
la correspondance entre les coordonnées dans le plateau et les coordonnées sur la fenétre graphique.

1. Ecrire une fonction qui dessine une cellule (vivante ou morte) & partir de ses coordonnées (sur le
plateau de jeu), sa taille (en pixels) et sa couleur : un carré de coté size entouré de gris.

val draw_cell : int * int -> int -> Graphics.color -> unit = <fun>

2. Ecrire la fonction draw_board qui prend en paramétre la matrice représentant le plateau de jeu,
la taille (en pixels) des cellules, et dessine le plateau sur la fenétre graphique (penser a effacer la
fenétre. . .).

val draw_board : int list list -> int -> unit = <fun>

1. http://caml.inria.fr/pub/docs/manual-ocaml/libref/Graphics.html

http://caml.inria.fr/pub/docs/manual-ocaml/libref/Graphics.html

CAML Info-Sup
TP 3 — oct. 2013 EpiTA

2 Le jeu

1. Ecrire la fonction seed_life board size count qui place aléatoirement (utiliser la fonction Random. int)
count nouvelles cellules dans le plateau board de taille size x size.

val seed_life : int list list -> int -> int -> int list list = <fun>

2. Ecrire la fonction new_board qui crée un nouveau plateau de jeu a partir de sa taille et du nombre
de cellules & placer.

val new_board : int -> int -> int list list = <fun>

3. Ecrire la fonction next_generation qui & partir du plateau applique les régles du jeu de la vie a
toutes les cellules et retourne le nouveau plateau.

val next_generation : int list list -> int list list = <fun>

4. Ecrire la fonction game board n qui applique les régles du jeu de la vie sur n générations au plateau
board et dessine le plateau & chaque génération.

val game : int list list -> int -> unit = <fun>

5. Ecrire enfin la fonction new_game qui crée un nouveau jeu a partir de la taille du plateau, du nombre
de cellules initiales et du nombre de générations.

val new_game : int -> int -> int -> unit = <fun>

3 Bonus

Quelques ajouts

1. Plutét que de donner le nombre de générations en paramétres, on peut laisser le jeu tourner tant
qu’il reste des cellules vivantes.
— Ecrire la fonction remaining qui teste s'il reste des cellules vivantes dans un plateau donné.
— Modifier la fonction new_game : si le nombre de générations passé est 0, le jeu tournera tant qu’il
restera des cellules.

2. Il existe des "schémas" connus (le clown, le canon a planeurs). On peut les "charger" & partir d’une
liste de coordonnées (voir exemples en ligne).
— Ecrire une fonction init_pattern pattern size qui crée un nouveau plateau de jeu de taille
size & partir de la liste des coordonnées des cellules (pattern).

— Modifier la fonction new_game (ou écrire la fonction new_game_2) afin qu’elle prenne en paramétre
le plateau de jeu, sa taille et le nombre de générations.

Optimisations
1. Réécrire les derniéres fonctions en évitant de redessiner la plateau a chaque génération.

2. count_neighbours : écrire cette fonction sans utiliser get_cell (elle ne doit faire qu'un parcours
de la matrice).

Choix et compilation

Utilisez les fonctions d’entrées sorties (read_int, print_...) pour écrire une version compilée qui
laisse le choix entre les différentes versions du jeu.

Voir un exemple en ligne.

Le manuel en ligne risque de vous étre utile!

	Préliminaires
	Le jeu
	Bonus

