CAML Info-Sup
PRACTICAL 4 — oct. 2013 EpiTA

Lists and Higher-Order Functions

Basics

Exercice 1 (iter)
Write the function iter which applies a function to each element of the list.

val iter : (’a -> unit) -> ’a list -> unit = <fun>

iter (print_int) [1; 2; 3; 4]1;;
1234- : unit = ()

Exercice 2 (map)

Write the function map which applies a function to each element of the list and return a list of these
results

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

map (function x -> x * x) [1; 2; 3; 4];;
- : int list = [1; 4; 9; 16]

Exercice 3 (iteri)

Write the function iter, same as iter, but the function is applied to the index of the element as first
argument (counting from 0), and the element itself as second argument.

val iteri : (int -> ’a -> unit) -> ’a list -> unit = <fun>

iteri (function n -> function x -> if n mod 2 = 0 then print_int x) [1;2;3;4;5] ;;
135- : unit = ()

Exercice 4 (mapi)

Write the function mapi, same as map, but the function is applied to the index of the element as first
argument (counting from 0), and the element itself as second argument.

val mapi : (int -> ’a -> ’b) -> ’a list -> ’b list = <fun>

mapi (function n -> function x -> power(x,n)) [3;3;3;3;3];;
- : int list = [1; 3; 9; 27; 81]

Exercice 5 (for_all)
Write the function for_all which checks if all the elements of the list satisfy the predicate.

val for_all : (’a -> bool) -> ’a list -> bool = <fun>

for_all (function x -> x = 0) [0; 0; 0; 0];;
- : bool = true

Exercice 6 (exists)
Write the function exists which checks if at least one element of the list satisfies the predicate.

val exists : (’a -> bool) -> ’a list -> bool = <fun>

exists (function x -> x = 0) [3; 4; 0; 6]1;;
- : bool = true

CAML Info-Sup
PRACTICAL 4 — oct. 2013 EpiTA

Game of Life

1. Rewrite the draw_cell function from the previous practical, with new arguments : the cell (an
integer), its coordinates (x,y) on the board, its size and a function which give the proper color
according to the cell’s state.

val draw_cell : int -> int * int -> int -> (int -> Graphics.color) -> unit = <fun>

2. Rewrite the draw_board function from the previous practical using only the iteri and draw_cell
functions. The draw_board function can not be itself recursive.
val draw_board : int list list -> int -> (int -> Graphics.color) -> unit = <fun>

3. Write the remaining function which determines if there is at least one cell respecting the rule
provided in the argument. The remaining function can not be itself recursive.
val remaining : (’a -> bool) -> ’a list list -> bool = <fun>

remaining (function x -> x > 0) board ;;
- : bool = true

4. Write the map_board function which will apply the provided function to each cell of the board if it
has a value greater than 0.The map_board function can not be itself recursive.
val map_board : ’a list list -> (’a -> ’b) -> ’b list list = <fun>

5. Write the mapi_board function which will apply the provided game’s rules to each cell of the
board. The mapi_board function can not be itself recursive. The function will take the following
arguments :

— the board

— the rule on how to get the neighborhood of the current cell, as a list

— the rule on how to count "actives" cells in a list

— the rule on how the cell will behave according to the neighborhood "active" value

val mapi_board : ’a list list -> (int -> int -> ’a list list -> ’b) ->
(’b -> ’c) -> (’c -> ’d) -> (°’d list list) = <fun>

6. Write the game_of _life function which takes the following arguments : the board’s size, the cell’s
size. It will initialize the game’s board properly, and will repeatedly draw the board, applies the
rules until no cell remains.

val game_of_life : int -> int -> unit = <fun>

Add-ons

Write the function real_life which takes all the rules and functions of the game (from display to
check cell’s life) in arguments, to make the game 100% customizable.
val real_life : ’? -> unit = <fun>

Modify the game’s rules to avoid killing the cells directly, but make them loose or gain life points
according to the environment. It might be interesting to see a display reflecting this.

