
Caml

practical 4 � oct. 2013
Info-Sup

Epita

Lists and Higher-Order Functions

Basics

Exercice 1 (iter)
Write the function iter which applies a function to each element of the list.

val iter : ('a -> unit) -> 'a list -> unit = <fun>

iter (print_int) [1; 2; 3; 4];;

1234- : unit = ()

Exercice 2 (map)
Write the function map which applies a function to each element of the list and return a list of these

results

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map (function x -> x * x) [1; 2; 3; 4];;

- : int list = [1; 4; 9; 16]

Exercice 3 (iteri)
Write the function iter, same as iter, but the function is applied to the index of the element as �rst

argument (counting from 0), and the element itself as second argument.

val iteri : (int -> 'a -> unit) -> 'a list -> unit = <fun>

iteri (function n -> function x -> if n mod 2 = 0 then print_int x) [1;2;3;4;5] ;;

135- : unit = ()

Exercice 4 (mapi)
Write the function mapi, same as map, but the function is applied to the index of the element as �rst

argument (counting from 0), and the element itself as second argument.

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list = <fun>

mapi (function n -> function x -> power(x,n)) [3;3;3;3;3];;

- : int list = [1; 3; 9; 27; 81]

Exercice 5 (for_all)
Write the function for_all which checks if all the elements of the list satisfy the predicate.

val for_all : ('a -> bool) -> 'a list -> bool = <fun>

for_all (function x -> x = 0) [0; 0; 0; 0];;

- : bool = true

Exercice 6 (exists)
Write the function exists which checks if at least one element of the list satis�es the predicate.

val exists : ('a -> bool) -> 'a list -> bool = <fun>

exists (function x -> x = 0) [3; 4; 0; 6];;

- : bool = true

1

Caml

practical 4 � oct. 2013
Info-Sup

Epita

Game of Life

1. Rewrite the draw_cell function from the previous practical, with new arguments : the cell (an
integer), its coordinates (x,y) on the board, its size and a function which give the proper color
according to the cell's state.

val draw_cell : int -> int * int -> int -> (int -> Graphics.color) -> unit = <fun>

2. Rewrite the draw_board function from the previous practical using only the iteri and draw_cell

functions. The draw_board function can not be itself recursive.

val draw_board : int list list -> int -> (int -> Graphics.color) -> unit = <fun>

3. Write the remaining function which determines if there is at least one cell respecting the rule
provided in the argument. The remaining function can not be itself recursive.

val remaining : ('a -> bool) -> 'a list list -> bool = <fun>

remaining (function x -> x > 0) board ;;

- : bool = true

4. Write the map_board function which will apply the provided function to each cell of the board if it
has a value greater than 0.The map_board function can not be itself recursive.

val map_board : 'a list list -> ('a -> 'b) -> 'b list list = <fun>

5. Write the mapi_board function which will apply the provided game's rules to each cell of the
board. The mapi_board function can not be itself recursive. The function will take the following
arguments :
� the board
� the rule on how to get the neighborhood of the current cell, as a list
� the rule on how to count "actives" cells in a list
� the rule on how the cell will behave according to the neighborhood "active" value

val mapi_board : 'a list list -> (int -> int -> 'a list list -> 'b) ->

('b -> 'c) -> ('c -> 'd) -> ('d list list) = <fun>

6. Write the game_of_life function which takes the following arguments : the board's size, the cell's
size. It will initialize the game's board properly, and will repeatedly draw the board, applies the
rules until no cell remains.

val game_of_life : int -> int -> unit = <fun>

Add-ons

Write the function real_life which takes all the rules and functions of the game (from display to
check cell's life) in arguments, to make the game 100% customizable.

val real_life : '? -> unit = <fun>

Modify the game's rules to avoid killing the cells directly, but make them loose or gain life points
according to the environment. It might be interesting to see a display re�ecting this.

2

