CAML Info-Sup
TP 4 — oct. 2013 EpiTA

Listes et Ordre Supérieur

Les bases

Exercice 1 (iter)
Ecrire la fonction iter qui prend en arguments une fonction et une liste et applique cette fonction a
tous les éléments de la liste.

val iter : (’a -> unit) -> ’a list -> unit = <fun>

iter (print_int) [1; 2; 3; 4];;
1234- : unit = ()

Exercice 2 (map)
Ecrire la fonction map qui prend en arguments une fonction et une liste et construit une nouvelle liste
avec Dapplication de la fonction prise en argument sur tous les éléments de la liste.

val map : (’a -> ’b) -> ’a list -> ’b list = <fun>

map (function x -> x * x) [1; 2; 3; 4];;
- : int list = [1; 4; 9; 16]

Exercice 3 (iteri)

Ecrire la fonction iteri qui a le méme comportement que la fonction iter, sauf que la fonction passée
en paramétre a pour premier argument la position de I’élément dans la liste (les listes commencent a 0)
et en deuxiéme argument 1’élément lui méme.

val iteri : (int -> ’a -> unit) -> ’a list -> unit = <fun>

iteri (function n -> function x -> if n mod 2 = 0 then print_int x) [1;2;3;4;5] ;;
135- : unit = ()

Exercice 4 (mapi)

Ecrire la fonction mapi qui a le méme comportement que la fonction map, sauf que la fonction passée
en parameétre a pour premier argument la position de I’élément dans la liste (les listes commencent a 0)
et en deuxiéme argument 1’élément lui méme.

val mapi : (int -> ’a -> ’b) -> ’a list -> ’b list = <fun>

mapi (function n -> function x -> power(x,n)) [3;3;3;3;3];;
- : int list = [1; 3; 9; 27; 81]

Exercice 5 (for_all)
Ecrire la fonction for_all qui prend en arguments une fonction booléenne et une liste et renvoie vrai
si pour tous les éléments X de la liste, f X = true.

val for_all : (’a -> bool) -> ’a list -> bool = <fun>

for_all (function x -> x = 0) [0; 0; 0; 0];;
- : bool = true

Exercice 6 (exists)
Ecrire la fonction exists qui prend en arguments une fonction booléenne et une liste et renvoie vrai si
pour un des éléments X de la liste, f X = true.

val exists : (’a -> bool) -> ’a list -> bool = <fun>

exists (function x -> x = 0) [3; 4; 0; 6];;
- : bool = true

CAML Info-Sup
TP 4 — oct. 2013 EpiTA

Jeu de la Vie

1. Ré-écrire la fonction draw_cell du TP précedent, avec en paramétres : la cellule (un entier), ses
coordonnées (x,y) sur le plateau ainsi que sa taille et une fonction qui donne la couleur & afficher
en fonction de I’état de la cellule. et qui va dessiner correctement la cellule sur le plateau de jeu.
val draw_cell : int -> int * int -> int -> (int -> Graphics.color) -> unit = <fun>

2. Ré-écrire la fonction draw_board du TP précédent en utilisant uniquement que les fonctions iteri
et draw_cell. La fonction draw_board ne doit pas étre elle méme récursive.
val draw_board : int list list -> int -> (int -> Graphics.color) -> unit = <fun>

3. Ecrire une fonction remaining qui determine si il y a au moins une cellule respectant la régle passée
en parameétre. La fonction remaining ne doit pas étre elle méme récursive.
val remaining : (’a -> bool) -> ’a list list -> bool = <fun>

remaining (function x -> x > 0) board ;;
- : bool = true

4. Ecrire une fonction map_board qui va appliquer la fonction passée en paramétre sur chaque case du
plateau si celle ci a une valeur supérieure a 0. La fonction map_board ne doit pas étre elle méme
récursive.

val map_board : ’a list list -> (’a -> ’b) -> ’b list list = <fun>

5. Ecrire une fonction mapi_board qui va parcourir chaque case du plateau et qui va appliquer les
régles du jeu de la vie dessus. La fonction mapi_board ne doit pas étre elle méme récursive. La
fonction prendra en paramétres :

— le plateau de jeu
— la régle qui récupére la liste des cellules voisines sous forme de liste
la régle qui compte les cellules "actives" dans une liste de cellules
— la régle qui détermine 1’état de la cellule en fonction des cellules "actives"

val mapi_board : ’a list list -> (int -> int -> ’a list list -> ’b) ->
(’b -> ’c) -> (’c -> ’d) -> (°d list list) = <fun>

6. Ecrire une fonction game_of_life qui prend en paramétres la largeur du plateau de jeu, la taille
d’affichage d’une case, initialise le plateau de jeu correctement, puis tant que le plateau contient
des cellules vivantes, affiche ce dernier, applique les différentes régles nécessaires et continue ainsi
de suite. La fonction fera donc appel & mapi_board.

val game_of_life : int -> int -> unit = <fun>

Bonus

Ecrire la fonction real_life qui prend en paramétres toutes les fonctions du jeu de la vie, de 1’affi-
chage & la fonction qui determine si une cellule reste en vie, afin de rendre le jeu 100% paramétrable.
val real_life : ’?7 -> unit = <fun>

Modifier les régles du jeu afin que les cellules ne meurent pas directement, mais plutot qu’elles
gagnent ou perdent des points de vie en fonction de leurs environnements avoisinant. Il peut étre
interessant de faire un affichage en fonction de leurs points de vie également.

