
Caml

tp 4 � oct. 2013
Info-Sup

Epita

Listes et Ordre Supérieur

Les bases

Exercice 1 (iter)
Écrire la fonction iter qui prend en arguments une fonction et une liste et applique cette fonction à

tous les éléments de la liste.

val iter : ('a -> unit) -> 'a list -> unit = <fun>

iter (print_int) [1; 2; 3; 4];;

1234- : unit = ()

Exercice 2 (map)
Écrire la fonction map qui prend en arguments une fonction et une liste et construit une nouvelle liste

avec l'application de la fonction prise en argument sur tous les éléments de la liste.

val map : ('a -> 'b) -> 'a list -> 'b list = <fun>

map (function x -> x * x) [1; 2; 3; 4];;

- : int list = [1; 4; 9; 16]

Exercice 3 (iteri)
Écrire la fonction iteri qui a le même comportement que la fonction iter, sauf que la fonction passée

en paramètre a pour premier argument la position de l'élément dans la liste (les listes commencent à 0)
et en deuxième argument l'élément lui même.

val iteri : (int -> 'a -> unit) -> 'a list -> unit = <fun>

iteri (function n -> function x -> if n mod 2 = 0 then print_int x) [1;2;3;4;5] ;;

135- : unit = ()

Exercice 4 (mapi)
Écrire la fonction mapi qui a le même comportement que la fonction map, sauf que la fonction passée

en paramètre a pour premier argument la position de l'élément dans la liste (les listes commencent à 0)
et en deuxième argument l'élément lui même.

val mapi : (int -> 'a -> 'b) -> 'a list -> 'b list = <fun>

mapi (function n -> function x -> power(x,n)) [3;3;3;3;3];;

- : int list = [1; 3; 9; 27; 81]

Exercice 5 (for_all)
Écrire la fonction for_all qui prend en arguments une fonction booléenne et une liste et renvoie vrai

si pour tous les éléments X de la liste, f X = true.

val for_all : ('a -> bool) -> 'a list -> bool = <fun>

for_all (function x -> x = 0) [0; 0; 0; 0];;

- : bool = true

Exercice 6 (exists)
Écrire la fonction exists qui prend en arguments une fonction booléenne et une liste et renvoie vrai si

pour un des éléments X de la liste, f X = true.

val exists : ('a -> bool) -> 'a list -> bool = <fun>

exists (function x -> x = 0) [3; 4; 0; 6];;

- : bool = true

1

Caml

tp 4 � oct. 2013
Info-Sup

Epita

Jeu de la Vie

1. Ré-écrire la fonction draw_cell du TP précedent, avec en paramètres : la cellule (un entier), ses
coordonnées (x,y) sur le plateau ainsi que sa taille et une fonction qui donne la couleur à a�cher
en fonction de l'état de la cellule. et qui va dessiner correctement la cellule sur le plateau de jeu.

val draw_cell : int -> int * int -> int -> (int -> Graphics.color) -> unit = <fun>

2. Ré-écrire la fonction draw_board du TP précédent en utilisant uniquement que les fonctions iteri
et draw_cell. La fonction draw_board ne doit pas être elle même récursive.

val draw_board : int list list -> int -> (int -> Graphics.color) -> unit = <fun>

3. Écrire une fonction remaining qui determine si il y a au moins une cellule respectant la règle passée
en paramètre. La fonction remaining ne doit pas être elle même récursive.

val remaining : ('a -> bool) -> 'a list list -> bool = <fun>

remaining (function x -> x > 0) board ;;

- : bool = true

4. Écrire une fonction map_board qui va appliquer la fonction passée en paramètre sur chaque case du
plateau si celle ci a une valeur supérieure à 0. La fonction map_board ne doit pas être elle même
récursive.

val map_board : 'a list list -> ('a -> 'b) -> 'b list list = <fun>

5. Écrire une fonction mapi_board qui va parcourir chaque case du plateau et qui va appliquer les
régles du jeu de la vie dessus. La fonction mapi_board ne doit pas être elle même récursive. La
fonction prendra en paramètres :
� le plateau de jeu
� la règle qui récupère la liste des cellules voisines sous forme de liste
� la règle qui compte les cellules "actives" dans une liste de cellules
� la règle qui détermine l'état de la cellule en fonction des cellules "actives"

val mapi_board : 'a list list -> (int -> int -> 'a list list -> 'b) ->

('b -> 'c) -> ('c -> 'd) -> ('d list list) = <fun>

6. Écrire une fonction game_of_life qui prend en paramètres la largeur du plateau de jeu, la taille
d'a�chage d'une case, initialise le plateau de jeu correctement, puis tant que le plateau contient
des cellules vivantes, a�che ce dernier, applique les di�érentes règles nécessaires et continue ainsi
de suite. La fonction fera donc appel à mapi_board.

val game_of_life : int -> int -> unit = <fun>

Bonus

Écrire la fonction real_life qui prend en paramètres toutes les fonctions du jeu de la vie, de l'a�-
chage à la fonction qui determine si une cellule reste en vie, a�n de rendre le jeu 100% paramètrable.

val real_life : '? -> unit = <fun>

Modi�er les règles du jeu a�n que les cellules ne meurent pas directement, mais plutot qu'elles
gagnent ou perdent des points de vie en fonction de leurs environnements avoisinant. Il peut être
interessant de faire un a�chage en fonction de leurs points de vie également.

2

