
Caml

tp 5 � october 2013
Info-Sup

Epita

Sudoku

Introduction

It's stricly forbidden to use the @ operator, the List module or any others.

Sudoku

"Sudoku, originally called Number Place, is a logic-based, combinatorial number-placement
puzzle. The objective is to �ll a 9Ö9 grid with digits so that each column, each row, and each
of the nine 3Ö3 sub-grids that compose the grid (also called "boxes", "blocks", "regions", or
"sub-squares") contains all of the digits from 1 to 9. The puzzle setter provides a partially
completed grid, which typically has a unique solution."
Quote : Wikipedia.

During this pratical, we are going to ask you to write an algorithm which will help us to solve Sudoku
puzzles (the easy ones, no ambiguity during the solving).

1

Caml

tp 5 � october 2013
Info-Sup

Epita

References:

let null = 0

and values = [1;2;3;4;5;6;7;8;9]

and grid_sample =

[[5; 3; 0; 0; 7; 0; 0; 0; 0];

[6; 0; 0; 1; 9; 5; 0; 0; 0];

[0; 9; 8; 0; 0; 0; 0; 6; 0];

[8; 0; 0; 0; 6; 0; 0; 0; 3];

[4; 0; 0; 8; 0; 3; 0; 0; 1];

[7; 0; 0; 0; 2; 0; 0; 0; 6];

[0; 6; 0; 0; 0; 0; 2; 8; 0];

[0; 0; 0; 4; 1; 9; 0; 0; 5];

[0; 0; 0; 0; 8; 0; 0; 7; 9]];;

Level 0: Must-do

0.1 Length

Write the length function that calculates the number of items in a list.

val length : 'a list -> int = <fun>

0.2 Flatten

Write the flatten function that transforms a list of lists into a list.

val flatten : 'a list list -> 'a list = <fun>

flatten [[1;2;3];[4;5]];;

- : int list = [1; 2; 3; 4; 5]

0.3 Check

Write the check function that indicates if an element of the list matches (using the function passed as
the �rst argument) the one given in parameter.

val check : ('a -> 'b -> bool) -> 'b -> 'a list -> bool = <fun>

0.4 Remove

Write the remove function that removes the �rst occurrence of an element in the list using the function
given in parameter.

val remove : ('a -> 'b -> bool) -> 'b -> 'a list -> 'a list = <fun>

0.5 Uniqueness

Write the list_uniq function that will remove the duplicate items in the list (found by using the function)
and will output the �ltered list. The element order is not important.

val list_uniq : ('a -> 'a -> bool) -> 'a list -> 'a list = <fun>

list_uniq (=) [1;2;3;5;6;8;0;0;0;2;0;3;0;5;6;0;1;4];;

- : int list = [8; 2; 3; 5; 6; 0; 1; 4]

0.6 Uniqueness - again

Write the list_match function that will return all the elements present in the two lists (but only one
occurrence of each, found by using the function). The element order is not important.

val list_match : ('a -> 'a -> bool) -> 'a list -> 'a list -> 'a list = <fun>

list_match (=) [1;2;3;5;6;8;0;0;0] [2;0;3;0;5;6;0;1;4];;

- : int list = [8; 2; 3; 5; 6; 0; 1; 4]

2

Caml

tp 5 � october 2013
Info-Sup

Epita

1 Level 1: Matrices

1.1 Rectangle

Write the grid_make_rectangle function that returns a list containing y lists containing x null values
(speci�ed in parameters).

val grid_make_rectangle : int -> int -> 'a -> 'a list list = <fun>

1.2 Square

Write the grid_make_square function that returns a list containing x lists containing x null values
(speci�ed in parameters.)

val grid_make_square : int -> 'a -> 'a list list = <fun>

1.3 Grid

Write the grid_make function that returns a list of lists, which can hold the Sudoku values (speci�ed in
parameters) �lled with null values (also speci�ed).

val grid_make : 'a list -> 'b -> 'b list list = <fun>

2 Level 2: Extractions

2.1 Row

Write the extract_row function that returns the line number n. The lines are numbered from 0 to the
number of allowed values - 1 (length values - 1), from top to bottom. The function must return a
simple list.

val extract_row : 'a list list -> int -> 'b list -> 'a list = <fun>

extract_row grid_sample 5 values;;

- : int list = [7; 0; 0; 0; 2; 0; 0; 0; 6]

2.2 Column

Write the extract_column function that returns the column number n. The columns are numbered from
0 to the number of allowed values - 1 (length values - 1), from left to right. The function must return
a simple list.

val extract_column : 'a list list -> int -> 'b list -> 'a list = <fun>

extract_column grid_sample 6 values;;

- : int list = [0; 0; 0; 0; 0; 0; 2; 0; 0]

2.3 Square

Write the extract_square function that returns the sub-grid number n. The sub-grids are numbered
from 0 to the number of allowed values - 1 (length values - 1), from left to right, and from top to
bottom. The function must return a simple list.

val extract_square : 'a list list -> int -> 'b list -> 'a list = <fun>

extract_square grid_sample 8 values;;

- : int list = [2; 8; 0; 0; 0; 5; 0; 7; 9]

3

Caml

tp 5 � october 2013
Info-Sup

Epita

2.4 Display

Write the grid_print function that displays the grid on the standard output. The function takes the
element display function as a parameter.

val grid_print : ('a -> 'b) -> 'a list list -> unit = <fun>

grid_print (print_int) grid_sample;;

5 3 0 0 7 0 0 0 0

6 0 0 1 9 5 0 0 0

0 9 8 0 0 0 0 6 0

8 0 0 0 6 0 0 0 3

4 0 0 8 0 3 0 0 1

7 0 0 0 2 0 0 0 6

0 6 0 0 0 0 2 8 0

0 0 0 4 1 9 0 0 5

0 0 0 0 8 0 0 7 9

- : unit = ()

3 Level 3: Checks

3.1 Exist and Uniqeness

Write the list_validate function that allows us to check if our allowed values are used only one time
(maximum) in the other list. We will use the provided compare function. Be carreful with the null value.

val list_validate : ('a -> 'b -> bool) -> 'a list -> 'a -> 'b list -> bool = <fun>

list_validate (=) values null [1;2;3;4;5;6;7;8;9];;

- : bool = true

list_validate (=) values null [0;1;3;4;0;0;0;1;9];;

- : bool = false

list_validate (=) values null [1;3;5;0;4;6;0;0;2];;

- : bool = true

3.2 Valid grid

Write the grid_validate function that checks if all the values in the grid are well placed according to
the Sudoku rules (never twice the same value in a row, column or sub-grid). Be careful with the null
value.

val grid_validate : ('a -> 'b -> bool) -> 'b list list -> 'a list -> 'a -> bool = <fun>

grid_validate (=) grid_sample values null;;

- : bool = true

3.3 Full grid

Write the grid_isfull function that checks whether a grid is full or not, meaning whether it contains
no null values.

val grid_isfull : ('a -> 'b -> bool) -> 'b list list -> 'a -> bool = <fun>

grid_isfull (=) grid_sample null;;

- : bool = false

4

Caml

tp 5 � october 2013
Info-Sup

Epita

4 Level 4: Solving

4.1 Missing value

Write the find_missing function that returns the list of values, �rst list, un-used in the second list.

val find_missing : ('a -> 'b -> bool) -> 'b list -> 'a list -> 'b list = <fun>

find_missing (=) values [8;2;3;5;6;0;1;4];;

- int list = [7; 9]

4.2 Find

Write the grid_find function that lists all the possible values for an empty grid's cell.

val grid_find : ('a -> 'a -> bool) -> 'a list list -> int -> int -> 'a list -> 'a list = <fun>

grid_find (=) grid_sample 8 0 values;;

- : int list = [2; 4; 8]

grid_find (=) grid_sample 0 8 values;;

- : int list = [1; 2; 3]

grid_find (=) grid_sample 0 6 values;;

- : int list = [1; 3; 9]

4.3 Next-step solving

Write the grid_nsolve function that gives us the next grid in the solving process. We intend to iterate
over the whole grid, and for each value:

� if the value is not null, we keep it

� if the value is null, we will check all the possible values to replace it

� if we have more than one possibility, we skip the solving for this iteration on this value, and
keep the null value.

� if we have only one possibility, we substitute the null value with this possibility for the new
grid.

At the end we return the new grid as a result.

val grid_nsolve : ('a -> 'a -> bool) -> 'a list list -> 'a -> 'a list -> 'a list list = <fun>

grid_print (print_int) (grid_nsolve (=) grid_sample null values)

5 3 0 0 7 0 0 0 0

6 0 0 1 9 5 0 0 0

0 9 8 0 0 0 0 6 0

8 0 0 0 6 0 0 0 3

4 0 0 8 5 3 0 0 1

7 0 0 0 2 0 0 0 6

0 6 0 0 0 7 2 8 4

0 0 0 4 1 9 0 3 5

0 0 0 0 8 0 0 7 9

- : unit = ()

5

Caml

tp 5 � october 2013
Info-Sup

Epita

5 Level 5: Bonus - Almost mandatory :)

5.1 Full solving

Write the solve function that solves a Sudoku's grid.

val solve : 'a list list -> ('a -> 'a -> bool) -> 'a list -> 'a -> 'a list list = <fun>

grid_print (print_int) (solve grid_sample (=) values null;;

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

- : unit = ()

6 Level 6: Bonus

6.1 True solving

For the mandatory part of this subject we deal only with grids having no ambiguity on the value during
the solving process. But this is only a small part of the iceberg. We want to manage choices during
solving, some of which may lead us to invalidates grids.

6.2 Grid generation

Now that we can solve any grid we �nd (if possible), we want to create our own. We must start from a
full valid grid, and substitute some of the values by the null values. The grid complexity will depend on
where and how many values we will substitute.

7 Level 7: Bonus bored, so what's next?

Because you have found this practical so easy (we do agree on this) we are bored to death, so we want to
do something more entertaining. I'm inviting you to visit the wikipedia webpage and implement other
kinds of Sudoku, such as:

� Nonomino

� Killer Sudoku

� Hyper Sudoku

� ...

6

