
Caml

tp 5 � octobre 2013
Info-Sup

Epita

Sudoku

Introduction

Il est strictement INTERDIT d'utiliser l'opérateur @ ainsi que le module List (et les autres).

Le Sudoku

"Le Sudoku (prononcé soudokou en français, est un jeu en forme de grille dé�ni en 1979 par
l'Américain Howard Garns.
Le but du jeu est de remplir la grille avec une série de chi�res (ou de lettres ou de symboles)
tous di�érents, qui ne se trouvent jamais plus d'une fois sur une même ligne, dans une même
colonne ou dans une même sous-grille. La plupart du temps, les symboles sont des chi�res
allant de 1 à 9, les sous-grilles étant alors des carrés de 3 Ö 3. Quelques symboles sont déjà
disposés dans la grille, ce qui autorise une résolution progressive du problème complet."
Source : Wikipédia.

Pendant ce TP nous allons vous demander d'écrire un algorithme qui nous permettra de résoudre des
grilles de Sudoku simple (pas d'ambiguïté sur les valeurs pendant la résolution).
A�n de rendre les choses plus faciles (ou pas) le type de la grille vous est imposé !
On considérera une grille permettant de stocker les valeurs de 1 au nombre de valeurs, on utilisera la
valeur null pour dire que la case est vide.

1

Caml

tp 5 � octobre 2013
Info-Sup

Epita

Références :

let null = 0

and values = [1;2;3;4;5;6;7;8;9]

and grid_sample =

[[5; 3; 0; 0; 7; 0; 0; 0; 0];

[6; 0; 0; 1; 9; 5; 0; 0; 0];

[0; 9; 8; 0; 0; 0; 0; 6; 0];

[8; 0; 0; 0; 6; 0; 0; 0; 3];

[4; 0; 0; 8; 0; 3; 0; 0; 1];

[7; 0; 0; 0; 2; 0; 0; 0; 6];

[0; 6; 0; 0; 0; 0; 2; 8; 0];

[0; 0; 0; 4; 1; 9; 0; 0; 5];

[0; 0; 0; 0; 8; 0; 0; 7; 9]];;

Level 0 : Les Must-do

0.1 Longueur

Écrire la fonction length qui retourne la longueur d'une liste.

val length : 'a list -> int = <fun>

0.2 Aplatir

Écrire la fonction flatten qui à partir d'une liste de liste, retourne une liste.

val flatten : 'a list list -> 'a list = <fun>

flatten [[1;2;3];[4;5]];;

- : int list = [1; 2; 3; 4; 5]

0.3 Présence

Écrire la fonction check qui nous indique si un élément présent dans la liste véri�e la fonction de
comparaison passée en paramètre avec comme premier argument la valeur passée en second argument.

val check : ('a -> 'b -> bool) -> 'b -> 'a list -> bool = <fun>

0.4 Suppression

Écrire la fonction remove qui retire la première occurrence d'un élément dans la liste en utilisant la
fonction de comparaison passée en paramètre avec comme premier argument la valeur passée en second
argument.

val remove : ('a -> 'b -> bool) -> 'b -> 'a list -> 'a list = <fun>

0.5 Unicité

Écrire la fonction list_uniq qui va retirer les doublons (trouvés via la fonction de comparaison) de
tous les élements et va retourner la liste �ltrée. L'ordre des éléments n'a pas d'importance.

val list_uniq : ('a -> 'a -> bool) -> 'a list -> 'a list = <fun>

list_uniq (=) [1;2;3;5;6;8;0;0;0;2;0;3;0;5;6;0;1;4];;

- : int list = [8; 2; 3; 5; 6; 0; 1; 4]

0.6 Unicité - bis

Écrire la fonction list_match qui va retourner la liste des éléments (une seule occurence de chaque
élément, trouvés via la fonction de comparaison) présent dans les deux listes passées en paramètres.
L'ordre des éléments n'a pas d'importance.

val list_match : ('a -> 'a -> bool) -> 'a list -> 'a list -> 'a list = <fun>

list_match (=) [1;2;3;5;6;8;0;0;0] [2;0;3;0;5;6;0;1;4];;

- : int list = [8; 2; 3; 5; 6; 0; 1; 4]

2

Caml

tp 5 � octobre 2013
Info-Sup

Epita

1 Level 1 : Les Matrices

1.1 Rectangle

Écrire la fonction grid_make_rectangle qui retourne une liste contenant y listes contenant x valeurs
nulles (spéci�ée en paramètre).

val grid_make_rectangle : int -> int -> 'a -> 'a list list = <fun>

1.2 Carré

Écrire la fonction grid_make_square qui retourne une liste contenant x listes contenant x valeurs
nulles (spéci�ée en paramètre).

val grid_make_square : int -> 'a -> 'a list list = <fun>

1.3 Grille

Écrire la fonction grid_make qui retourne une liste de liste pouvant contenir la liste des valeurs de
notre jeu de Sudoku (passée en paramètre), remplie de la valeur nulle (spéci�ée en paramètre).

val grid_make : 'a list -> 'b -> 'b list list = <fun>

2 Level 2 : Les Extractions

2.1 Ligne

Écrire la fonction extract_row qui retourne la ligne numéro n. Les lignes sont numérotées de 0 au
nombre de valeurs possible - 1 (length values - 1), de haut en bas. La valeur de retour de la fonction
doit être une liste de valeurs simples.

val extract_row : 'a list list -> int -> 'b list -> 'a list = <fun>

extract_row grid_sample 5 values;;

- : int list = [7; 0; 0; 0; 2; 0; 0; 0; 6]

2.2 Colonne

Écrire la fonction extract_column qui retourne la colonne numéro n. Les colonnes sont numérotées
de 0 au nombre de valeurs possible - 1 (length values - 1, de gauche à droite. La valeur de retour de
la fonction doit être une liste de valeurs simples.

val extract_column : 'a list list -> int -> 'b list -> 'a list = <fun>

extract_column grid_sample 6 values;;

- : int list = [0; 0; 0; 0; 0; 0; 2; 0; 0]

2.3 Carré

Écrire la fonction extract_square qui retourne la sous-grille numéro n. Les sous grilles sont numéro-
tées de 0 au nombre de valeurs possible - 1 (length values - 1), de gauche à droite et de haut en bas.
La valeur de retour de la fonction doit être une liste de valeurs simples. La fonction prendra en paramètre
le plateau de jeu, le numéro de la sous-grille, ainsi que la liste des valeurs possible pour notre jeu.

val extract_square : 'a list list -> int -> 'b list -> 'a list = <fun>

extract_square grid_sample 8 values;;

- : int list = [2; 8; 0; 0; 0; 5; 0; 7; 9]

3

Caml

tp 5 � octobre 2013
Info-Sup

Epita

2.4 A�chage

Écrire la fonction grid_print qui a�che une grille sur la sortie standard. La fonction prend en
paramètre la fonction d'a�chage d'un élément.

val grid_print : ('a -> 'b) -> 'a list list -> unit = <fun>

grid_print (print_int) grid_sample;;

5 3 0 0 7 0 0 0 0

6 0 0 1 9 5 0 0 0

0 9 8 0 0 0 0 6 0

8 0 0 0 6 0 0 0 3

4 0 0 8 0 3 0 0 1

7 0 0 0 2 0 0 0 6

0 6 0 0 0 0 2 8 0

0 0 0 4 1 9 0 0 5

0 0 0 0 8 0 0 7 9

- : unit = ()

3 Level 3 : Les véri�cations

3.1 Présence et Unicité

Écrire la fonction list_validate qui permet de véri�er que les éléments de notre liste de valeurs ne
sont présents dans une autre liste qu'une seule et unique fois (via la méthode de comparaison spéci�ée
en paramètre. Attention au cas particulier de la valeur nulle (spéci�ée en paramètre également).

val list_validate : ('a -> 'b -> bool) -> 'a list -> 'a -> 'b list -> bool = <fun>

list_validate (=) values null [1;2;3;4;5;6;7;8;9];;

- : bool = true

list_validate (=) values null [0;1;3;4;0;0;0;1;9];;

- : bool = false

list_validate (=) values null [1;3;5;0;4;6;0;0;2];;

- : bool = true

3.2 Grille valide

Écrire la fonction grid_validate qui permet de véri�er qu'une grille respecte bien les règles du
Sudoku. C'est à dire pas deux éléments de même valeur sur une ligne ou colonne ou sous-grille. Attention
toujours aux valeurs nulles.

val grid_validate : ('a -> 'b -> bool) -> 'b list list -> 'a list -> 'a -> bool = <fun>

grid_validate (=) grid_sample values null;;

- : bool = true

3.3 Grille pleine

Écrire la fonction grid_isfull qui permet de véri�er qu'une grille est pleine ou pas. C'est à dire
qu'elle ne contient plus de valeurs nulles.

val grid_isfull : ('a -> 'b -> bool) -> 'b list list -> 'a -> bool = <fun>

grid_isfull (=) grid_sample null;;

- : bool = false

4

Caml

tp 5 � octobre 2013
Info-Sup

Epita

4 Level 4 : La résolution

4.1 Élement manquant

Écrire la fonction find_missing qui retourne la liste des élements de notre liste de valeurs non présents
dans la deuxième.

val find_missing : ('a -> 'b -> bool) -> 'b list -> 'a list -> 'b list = <fun>

find_missing (=) values [8;2;3;5;6;0;1;4];;

- int list = [7; 9]

4.2 Les choix

Écrire la fonction grid_find qui liste les possibilités de valeurs pour une case de notre grille de
Sudoku.

val grid_find : ('a -> 'a -> bool) -> 'a list list -> int -> int -> 'a list -> 'a list = <fun>

grid_find (=) grid_sample 8 0 values;;

- : int list = [2; 4; 8]

grid_find (=) grid_sample 0 8 values;;

- : int list = [1; 2; 3]

grid_find (=) grid_sample 0 6 values;;

- : int list = [1; 3; 9]

4.3 La solution au rang suivant

Écrire la fonction grid_nsolve qui donne la grille suivante dans le processus de résolution :
On se propose de parcourir toute la grille et pour chaque case :

� si la case contient une valeur non nulle, on garde cette valeur dans la nouvelle grille.
� si la case contient une valeur nulle, on va regarder la liste des solutions possibles pour cette case
� si la liste des solutions contient plus d'une possibilité, on ignore la case et on passe a la suivante.
� si la liste des solutions ne contient qu'une seule valeur, on met cette valeur dans la nouvelle grille.

Une fois l'ensemble des cases vues, on retourne la nouvelle grille.

val grid_nsolve : ('a -> 'a -> bool) -> 'a list list -> 'a -> 'a list -> 'a list list = <fun>

grid_print (print_int) (grid_nsolve (=) grid_sample null values)

5 3 0 0 7 0 0 0 0

6 0 0 1 9 5 0 0 0

0 9 8 0 0 0 0 6 0

8 0 0 0 6 0 0 0 3

4 0 0 8 5 3 0 0 1

7 0 0 0 2 0 0 0 6

0 6 0 0 0 7 2 8 4

0 0 0 4 1 9 0 3 5

0 0 0 0 8 0 0 7 9

- : unit = ()

5

Caml

tp 5 � octobre 2013
Info-Sup

Epita

5 Level 5 : Bonus - obligatoire ou presque :)

5.1 Résolution complète

Écrire la fonction solve qui donne la solution pour une grille de Sudoku.

val solve : 'a list list -> ('a -> 'a -> bool) -> 'a list -> 'a -> 'a list list = <fun>

grid_print (print_int) (solve grid_sample (=) values null;;

5 3 4 6 7 8 9 1 2

6 7 2 1 9 5 3 4 8

1 9 8 3 4 2 5 6 7

8 5 9 7 6 1 4 2 3

4 2 6 8 5 3 7 9 1

7 1 3 9 2 4 8 5 6

9 6 1 5 3 7 2 8 4

2 8 7 4 1 9 6 3 5

3 4 5 2 8 6 1 7 9

- : unit = ()

6 Level 6 : Les bonus

6.1 La vraie résolution complète

Dans la partie obligatoire, on ne propose de résoudre que des grilles simples, ou il n'y a jamais
d'ambiguïté sur les valeurs à choisir. Cependant ce cas n'est pas représentatif de l'ensemble des grilles de
Sudoku. On se propose de gérer dans cette partie la résolution des grilles avec ambiguïté sur le choix des
valeurs. Attention certains choix vous emmènerons donc sur des grilles non valides.

6.2 La génération de grille

Maintenant que nous sommes capables de résoudre toutes les grilles, nous allons donc passer à la
création de celles-ci. Il nous su�t de prendre une grille complète et valide, et de remplacer certaines
valeurs par la valeur nulle. La complexité de la grille dépendra des positions et quantités de valeurs que
vous allez retirer.

7 Level 7 : Bonus j'ai vraiment rien d'autre a faire

Puisque apparemment le reste était tellement trivial (et je vous comprends) que vous vous êtes ennuyés
sur le reste du tp, je vous invite à aller sur wikipedia et d'implémenter les autres types de grille de Sudoku :

� Nonomino
� Killer Sudoku
� Hyper Sudoku
� ...

6

