CaML Info-Sup
TP 5 — octobre 2013 EpITA

Sudoku

Introduction

Il est strictement INTERDIT d’utiliser I’opérateur @ ainsi que le module List (et les autres).

Le Sudoku

"Le Sudoku (prononcé soudokou en francais, est un jeu en forme de grille défini en 1979 par
’Américain Howard Garns.

Le but du jeu est de remplir la grille avec une série de chiffres (ou de lettres ou de symboles)
tous différents, qui ne se trouvent jamais plus d’une fois sur une méme ligne, dans une méme
colonne ou dans une méme sous-grille. La plupart du temps, les symboles sont des chiffres
allant de 1 a 9, les sous-grilles étant alors des carrés de 3 x 3. Quelques symboles sont déja
disposés dans la grille, ce qui autorise une résolution progressive du probléme complet.”
Source : Wikipédia.

Pendant ce TP nous allons vous demander d’écrire un algorithme qui nous permettra de résoudre des
grilles de Sudoku simple (pas d’ambiguité sur les valeurs pendant la résolution).
Afin de rendre les choses plus faciles (ou pas) le type de la grille vous est imposé !
On considérera une grille permettant de stocker les valeurs de 1 au nombre de valeurs, on utilisera la
valeur null pour dire que la case est vide.

WIIN|O|[N]|S~[[]|H=][|S]|[wv
Bl =]|IN|[]|O©||N|[W
V[[N||=][W]O([[O]|][IN ||
NS ||V][O]|®|[([N]|[W]|IH=][o
R ([[=|| W[N] A~]O][N
DO | N[~ [W][F=]||N[|VT]]|O0
=IO |IN][O]||IN|[H~]|V]||W]|[WO
SN WISV WO N[O]|] =
O [||| [[W]N][(N

CaML Info-Sup
TP 5 — octobre 2013 EpITA

Références :

let null = 0

and values [1;2;3;4;5;6;7;8;9]

and grid_sample =
[[5; 3; 05 0; 7; 0; 0; 0; 01;
[6; 0; 0; 1; 9; 5; 0; 0; 0I;
[0; 9; 8; 0; 0; 0; 0; 6; 0I;
[8; 0; 0; 0; 6; 0; 0; 0; 31;
[4; 0; 0; 8; 0; 3; 0; 0; 11;
[7; 0; 05 0; 2; 0; 0; 0; 61;
[0; 6; 0; 0; O; 0; 2; 8; 01;
[0; 0; O; 4; 1; 9; 0; 0; 51;
[0; 0; 05 0; 8; 05 0; 7; 911;;

Level 0 : Les Must-do

0.1 Longueur

Ecrire la fonction length qui retourne la longueur d’une liste.

val length : ’a list -> int = <fun>

0.2 Aplatir

Ecrire la fonction flatten qui & partir d’une liste de liste, retourne une liste.

val flatten : ’a list list -> ’a list = <fun>
flatten [[1;2;3]1;[4;511;;
- : int list = [1; 2; 3; 4; 5]

0.3 Présence
Ecrire la fonction check qui nous indique si un élément présent dans la liste vérifie la fonction de
comparaison passée en paramétre avec comme premier argument la valeur passée en second argument.

val check : (’a -> ’b -> bool) -> ’b -> ’a 1list -> bool = <fun>

0.4 Suppression

Ecrire la fonction remove qui retire la premiére occurrence d’un élément dans la liste en utilisant la
fonction de comparaison passée en parameétre avec comme premier argument la valeur passée en second
argument.

val remove : (’a -> ’b -> bool) -> ’b -> ’a list -> ’a list = <fun>

0.5 Unicité

Ecrire la fonction 1ist_uniq qui va retirer les doublons (trouvés via la fonction de comparaison) de
tous les élements et va retourner la liste filtrée. L’ordre des éléments n’a pas d’importance.

val list_uniq : (’a -> ’a -> bool) -> ’a list -> ’a list = <fun>
list_uniq (=) [1;2;3;5;6;8;0;0;0;2;0;3;0;5;6;0;1;4]5;
- : int list = [8; 2; 3; 5; 6; 0; 1; 4]

0.6 TUnicité - bis

Ecrire la fonction list_match qui va retourner la liste des éléments (une seule occurence de chaque
élément, trouvés via la fonction de comparaison) présent dans les deux listes passées en parameétres.
L’ordre des éléments n’a pas d’importance.

val list_match : (’a -> ’a -> bool) -> ’a list -> ’a list -> ’a list = <fun>
list_match (=) [1;2;3;5;6;8;0;0;0] [2;033;0;55650;154]5;
- : int list = [8; 2; 3; 5; 6; 0; 1; 4]

CaML Info-Sup
TP 5 — octobre 2013 EpITA

1 Level 1 : Les Matrices

1.1 Rectangle

Ecrire la fonction grid_make_rectangle qui retourne une liste contenant y listes contenant x valeurs
nulles (spécifiée en paramétre).

val grid_make_rectangle : int -> int -> ’a -> ’a list list = <fun>

1.2 Carré

Ecrire la fonction grid_make_square qui retourne une liste contenant x listes contenant x valeurs
nulles (spécifiée en parameétre).

val grid_make_square : int -> ’a -> ’a list list = <fun>

1.3 Grille

Ecrire la fonction grid_make qui retourne une liste de liste pouvant contenir la liste des valeurs de
notre jeu de Sudoku (passée en paramétre), remplie de la valeur nulle (spécifiée en paramétre).

val grid_make : ’a list -> ’b -> ’b list list = <fun>

2 Level 2 : Les Extractions

2.1 Ligne

Ecrire la fonction extract_row qui retourne la ligne numéro n. Les lignes sont numérotées de 0 au
nombre de valeurs possible - 1 (length values - 1), de haut en bas. La valeur de retour de la fonction
doit étre une liste de valeurs simples.

val extract_row : ’a list list -> int -> ’b list -> ’a 1list = <fun>

extract_row grid_sample 5 values;;
- : int list = [7; 0; 0; 0; 2; 0; 0; 0; 6]
2.2 Colonne

Ecrire la fonction extract_column qui retourne la colonne numéro n. Les colonnes sont numérotées
de 0 au nombre de valeurs possible - 1 (length values - 1, de gauche & droite. La valeur de retour de
la fonction doit étre une liste de valeurs simples.

val extract_column : ’a list list -> int -> ’b list -> ’a list = <fun>

extract_column grid_sample 6 values;;
- : int list = [0; 0; 0; 0; 0; 0; 2; 0; 0]

2.3 Carré

Ecrire la fonction extract_square qui retourne la sous-grille numéro n. Les sous grilles sont numéro-
tées de 0 au nombre de valeurs possible - 1 (Length values - 1), de gauche & droite et de haut en bas.
La valeur de retour de la fonction doit étre une liste de valeurs simples. La fonction prendra en paramétre
le plateau de jeu, le numéro de la sous-grille, ainsi que la liste des valeurs possible pour notre jeu.

val extract_square : ’a list list -> int -> ’b list -> ’a list = <fun>

extract_square grid_sample 8 values;;
- : int list = [2; 8; 0; 0; 0; 5; 0; 7; 9]

CaML Info-Sup
TP 5 — octobre 2013 EpITA

2.4 Affichage

Ecrire la fonction grid_print qui affiche une grille sur la sortie standard. La fonction prend en
parametre la fonction d’affichage d’un élément.

val grid_print : (’a -> ’b) -> ’a list list -> unit = <fun>

grid_print (print_int) grid_sample;;
0 70 00

CoOoO N ®O O O H

Como oo ©Vow

‘ocoocoocoocom®o
hO O MO O KR O

1
[~}
IS]
[
ct

O ONOOO O OO
~NO 0O OO Oo,Oo
© U1 OO = WO O

o
‘O, ONO OO ©

]I © ©W O O WO o wm

~
~

3 Level 3 : Les vérifications

3.1 Présence et Unicité

Ecrire la fonction 1ist_validate qui permet de vérifier que les éléments de notre liste de valeurs ne
sont présents dans une autre liste qu’une seule et unique fois (via la méthode de comparaison spécifiée
en parameétre. Attention au cas particulier de la valeur nulle (spécifiée en paramétre également).

val list_validate : (’a -> ’b -> bool) -> ’a list -> ’a -> ’b list -> bool = <fun>

list_validate (=) values null [1;2;3;4;5;6;7;8;9];;
- : bool = true

list_validate (=) values null [0;1;3;4;0;0;0;1;9];;
- : bool = false

list_validate (=) values null [1;3;5;0;4;6;0;0;2];;
- : bool = true
3.2 Grille valide

Ecrire la fonction grid_validate qui permet de vérifier qu'une grille respecte bien les régles du
Sudoku. C’est a dire pas deux éléments de méme valeur sur une ligne ou colonne ou sous-grille. Attention
toujours aux valeurs nulles.

val grid_validate : (’a -> ’b -> bool) -> ’b list list -> ’a list -> ’a -> bool = <fun>

grid_validate (=) grid_sample values null;;
- : bool = true
3.3 Grille pleine

Ecrire la fonction grid_isfull qui permet de vérifier qu’une grille est pleine ou pas. C’est a dire
qu’elle ne contient plus de valeurs nulles.

val grid_isfull : (’a -> ’b -> bool) -> ’b list list -> ’a -> bool = <fun>

grid_isfull (=) grid_sample null;;
- : bool = false

CaML Info-Sup
TP 5 — octobre 2013 EpITA

4 Level 4 : La résolution

4.1 Element manquant

Ecrire la fonction find_missing qui retourne la liste des élements de notre liste de valeurs non présents
dans la deuxiéme.

val find_missing : (’a -> ’b -> bool) -> ’b list -> ’a list -> ’b list = <fun>
find_missing (=) values [8;2;3;5;6;0;1;4];;

- int list = [7; 9]

4.2 Les choix

Ecrire la fonction grid_find qui liste les possibilités de valeurs pour une case de notre grille de
Sudoku.

val grid_find : (’a -> ’a -> bool) -> ’a list list -> int -> int -> ’a list -> ’a list = <fun>

grid_find (=) grid_sample 8 0 values;;
- : int list = [2; 4; 8]

grid_find (=) grid_sample O 8 values;;
- : int list = [1; 2; 3]

grid_find (=) grid_sample O 6 values;;
- : int list = [1; 3; 9]

4.3 La solution au rang suivant

Ecrire la fonction grid_nsolve qui donne la grille suivante dans le processus de résolution :
On se propose de parcourir toute la grille et pour chaque case :
— si la case contient une valeur non nulle, on garde cette valeur dans la nouvelle grille.
— si la case contient une valeur nulle, on va regarder la liste des solutions possibles pour cette case
— si la liste des solutions contient plus d’une possibilité, on ignore la case et on passe a la suivante.
— si la liste des solutions ne contient qu’une seule valeur, on met cette valeur dans la nouvelle grille.
Une fois I’ensemble des cases vues, on retourne la nouvelle grille.

val grid_nsolve : (’a -> ’a -> bool) -> ’a list list -> ’a -> ’a list -> ’a list list = <fun>

grid_print (print_int) (grid_nsolve (=) grid_sample null values)
0070000

CoOoO N ®mO O O H
ComoO0O VoW
T ocoocoooom®mo
~N OO OO O

1
=]
<]
=
ct

O ONOOOO OO
~N WO OO o,Oo
O OO WO o

o
o~ ON OO O ©

I © O NO WO o wm

~
—

CaML Info-Sup
TP 5 — octobre 2013 EpITA

5 Level 5 : Bonus - obligatoire ou presque :)

5.1 Résolution compléte

Ecrire la fonction solve qui donne la solution pour une grille de Sudoku.

val solve : ’a list list -> (’a -> ’a -> bool) -> ’a list -> ’a -> ’a list list = <fun>

grid_print (print_int) (solve grid_sample (=) values null;;
534678912
672195348
198342567
859761423
426853791
713924856
961537284
287419635
345286179
- : unit = ()

6 Level 6 : Les bonus

6.1 La vraie résolution compléte

Dans la partie obligatoire, on ne propose de résoudre que des grilles simples, ou il n’y a jamais
d’ambiguité sur les valeurs & choisir. Cependant ce cas n’est pas représentatif de I’ensemble des grilles de
Sudoku. On se propose de gérer dans cette partie la résolution des grilles avec ambiguité sur le choix des
valeurs. Attention certains choix vous emmeénerons donc sur des grilles non valides.

6.2 La génération de grille

Maintenant que nous sommes capables de résoudre toutes les grilles, nous allons donc passer a la
création de celles-ci. Il nous suffit de prendre une grille compléte et valide, et de remplacer certaines
valeurs par la valeur nulle. La complexité de la grille dépendra des positions et quantités de valeurs que
vous allez retirer.

7 Level 7 : Bonus j’at vraiment rien d’autre a faire

Puisque apparemment le reste était tellement trivial (et je vous comprends) que vous vous étes ennuyés
sur le reste du tp, je vous invite & aller sur wikipedia et d’implémenter les autres types de grille de Sudoku :

— Nonomino

— Killer Sudoku

— Hyper Sudoku

