C# Info-Sup
TP 11 — Mars 2014 EpiTA

Tout ce que vous avez toujours voulu savoir sur les pointeurs...

(sans jamais oser le demander)

1 Consignes de rendu

A la fin de ce TP, vous serez dans ’obligation de rendre une archive respectant ’architecture
suivante :

-- rendu-tpcsll-login_x.zip
|-- login_x/

| -— AUTHORS

| -- README

|-- BONI.txt

| -- Unsafe
| -- Unsafe.cs
|-- safe.dll

| -- Unsafe.sln

Bien entendu, vous devez remplacer login_x par votre propre login.

N’oubliez pas de vérifier les points suivants avant de rendre :

Fichier AUTHORS

Le fichier nommé AUTHORS doit se trouver & la racine de votre rendu. Il devra contenir tous

les auteurs du projet (en I'occurrence, VOUS seulement). Le format, pour chaque auteur, est le
suivant :

— Le caracteére ‘¥’ suivi d’un espace.
— Le login de I’étudiant.
— Un retour a la ligne.

Fichier README

Le fichier nommé README doit se trouver a la racine de votre rendu. Il devra contenir vos
remarques a propos de ce TP et de votre travail.

Conseils et remarques

Lisez le sujet dans son intégralité avant de commencer. Une fois que vous ’avez lu, relisez-le.
Réalisez les exercices dans l'ordre car ils sont en difficulté croissante.
N’oubliez pas de vérifier les points suivants avant de rendre :

— Le fichier AUTHORS doit étre au format habituel (rappelé ci-dessus).

— Aucun dossier bin ou obj dans le rendu.

— Les fonctions demandées doivent respecter le prototype donné

— Le code doit COMPILER.

— Si vous faites des boni, n’oubliez pas de I’écrire dans un fichier nommé BONI.txt
Lorsque cela n’est pas précisé, vous étes totalement libre quant a I'implémentation des fonctions.



C#
TP 11 — Mars 2014

Info-Sup
EpiTA

2 Cours

Les pointeurs est un concept important en programmation et méme si leur utilisation est
rarement nécessaire en C#, ils peuvent étre utiles dans certaines situations :

— travail sur des structures existantes sur disque;

— scénarios COM ou d’appel de plate-forme avancés requérant a des structures contenant

des pointeurs;

— code a performances critiques.
L’utilisation de contexte unsafe dans d’autres situations n’est pas recommandée. En parti-

culier, il ne faut pas utiliser un contexte unsafe pour tenter d’écrire du code C en C#.

Exemple

Description

int* p

p est un pointeur vers un entier.

int™* p

p est un pointeur de pointeur vers un entier.

int*[] p

p est un tableau unidimensionnel vers des entiers.

char® p

p est un pointeur vers un caractere.

void* p

p est un pointeur vers un type inconnu.

Attention :

L’expression suivante déclare trois pointeurs vers des entiers.

lint* a, b, c;

3 Petits tests entre caracteres

Tout d’abord, pour pouvoir utiliser les pointeurs en C#, il vous faut autoriser le code unsafe :
pour cela, allez dans les Propriétés de votre projet, puis Build et cochez Allow unsafe code.
Vous pouvez désormais utiliser le mot clé unsafe.

Printons'!

Commencons par écrire une fonction d’impression print, avec deux surcharges : une prend

un caractere, 'autre un pointeur vers un caractere.

Prototypes :

static unsafe void print(char a);
static unsafe void print(char* a);

Les deux fonctions imprimeront dans la console la phrase suivante :

The char [1] is located at [2].

avec [1] étant la valeur du caractére en question et [2] son pointeur.




C# Info-Sup
TP 11 — Mars 2014 EpiTA

Késako ?

Ajoutons maintenant cette fonction, et appelons-la dans le main.

static unsafe void test_char()
{
char a = ’a’;
print(&a);
print(a);
}

Exécutez votre code. .. Les résultats sont différents, pourquoi ?
FEcrivez un commentaire au dessus de cette fonction pour expliquer le phénomene.

Swap

Ecrivez maintenant une fonction swap qui va échanger les deux valeurs pointées par p et q.
Son prototype est le suivant :

public static unsafe void swap(int* p, int* q);

4 Opérations sur les tableaux

Tout d’abord, téléchargez le fichier safe.d1l sur perso.epita.fr. Placez le fichier dans le
dossier de votre projet (se référer aux consignes de rendu pour plus de précision) puis ajoutez
le dll a votre projet :

— Dans le Solution Explorer (& droite), cliquez droit sur References;

— Choisissez "Add Reference";

— Puis "Browse" et validez votre dll.

Maintenant que la bibliotheque est incluse dans votre projet, ajoutez le using correspondant
tout en haut de votre fichier.

Cette bibliotheque vous donne acces a deux classes : Unsafe et Misc. Unsafe contient la
version corrigée des fonctions que vous devrez implémenter : vous pourrez ainsi tester votre TP !
De plus, vous pouvez utiliser les fonctions de Misc pour générer des tableaux aléatoires.

Rappel :
Une string est simplement un tableau de caractéres. Vous pouvez donc faire sur une string les
mémes opérations que sur les tableaux.

Impression d’un tableau

Ecrivez la fonction print_array() qui prend en parameétre un pointeur d’entier et un entier
représentant la taille. Cette fonction va parcourir size entiers du tableau et les imprimer, puis
revenir a la ligne.



C# Info-Sup
TP 11 — Mars 2014 EpiTA

Prototype :

static unsafe void print_array(int* src, int size);

Ecrivez maintenant deux surcharges de cette méme fonction mais qui prendra cette fois
seulement un pointeur de caractére. En suivant le méme principe que la fonction précédente,
vous devez maintenant parcourir le tableau de caracteres jusqu’au dernier élément, puis revenir
a la ligne. De plus, elle devra retourner un entier correspondant au nombre de caracteres affichés.
Conseil : le caractere \0 indique la fin de la chaine.

Prototype :

static unsafe int print_array(char* src);

Modification d’un tableau

Ecrivez la fonction £i11_array() qui prend en parametre un pointeur de caractere et un
caractere, et remplit le tableau avec ce dernier. De plus, elle devra retourner un entier corres-
pondant au nombre de caractéres modifiés.

Prototype :

static unsafe int fill_array(char* src, char val);

Strlen

La fonction strlen() retourne un entier correspondant & la taille du tableau de caracteres.
Prototype :

|static unsafe int strlen(char* src);

Clone

La fonction clone() duplique le tableau de caracteres source src et renvoie le pointeur sur
son premier.
Prototype :

static unsafe char* clone(char* src);




C# Info-Sup
TP 11 — Mars 2014 EpiTA

ROTn

Ici, vous allez devoir écrire deux fonctions rot () (vous devriez les connaitre parfaitement) :
elles doivent effectuer une rotation de n caracteres sur la source passée en argument et renvoyer
le résultat.

La source est un char dans le premier cas et un char* pour la deuxieme fonction !
Conseil : écrire la premiere fonction en premier peut étre utile...
Prototype :

static char rot(char src, uint n);
static unsafe void rot(char* src, uint n);

Remove

La fonction remove() supprime le caractére & la position index et décale tous les entiers
suivants. Le dernier caractere doit étre \0.
Prototype :

static unsafe void remove(char* src, int index);

Conversion

La fonction to_string() convertit un tableau de caracteres en string.
Prototype :

unsafe string to_string(char* src);

Memcpy

La fonction memcpy () est une fonction en C qui copie n bits depuis une destination vers une
source src.
Ecrivez-en une copie en C#, dont le prototype sera le suivant :

|static unsafe void *memcpy (void* dst, const void* src, int n);

Memset

La fonction memset () qui est aussi une fonction en C, remplit les n premiers octets de la
zone de mémoire pointée par s avec 'octet c.
Prototype :

|static unsafe void *memset (void *s, int c, int n);




C# Info-Sup
TP 11 — Mars 2014 EpiTA

Memcmp

La fonction memcmp () compare les n premiers octets des zones mémoire s1 et s2. Elle ren-
voie un entier inférieur, égal, ou supérieur a zero, si sl est respectivement inférieure, égale ou
supérieure a s2.

Prototype :

static unsafe int memcmp (const void *sl, const void *s2, int n);

Average

La fonction average () retourne la moyenne des size premiéres valeurs d’un tableau src.
Prototype :

static unsafe float average(int* src, int size);

Add

La fonction add () ajoute n au size premiers éléments d’un tableau src. Elle doit retourner
le pointeur vers le premier élément du tableau.
Prototype :

static unsafe int* add(int* src, int size, int n);

Minimum

La fonction minimum() retourne le pointeur vers le plus petit entier contenu dans les size
premieres valeur d’un tableau src.
Prototype :

static unsafe int* min_val(int* src, int size);

Maximum

La fonction maximum() retourne 'index du plus grand entier contenu dans les size premieres
valeur d’un tableau src.
Prototype :

static unsafe int max_val_index(int* src, int size)




C# Info-Sup
TP 11 — Mars 2014 EpiTA

Sort

La fonction sort() doit trier le tableau d’entiers et retourne le pointeur sur son premier
élément.
Vous étes libres quant au choix de I'algorithme de tri (exemple : tri & bulles). Pensez a préciser
votre choix dans un commentaire !

Prototype :

|static unsafe int* sort(int* src, int size);

Remove All

La fonction remove_all() supprime toutes les occurrences de n dans le tableau d’entiers
src en décalant tout les entiers suivants (a sa droite). La valeur de retour correspond au nombre
d’éléments supprimés.

La taille size doit étre modifiée en conséquence. Prototype :

|static unsafe int remove all(int* src, ref int size, int n);




