
C#

tp 12 � April 2014
Info-Sup

Epita

TPC#12 : Generics, interfaces and delegates !

Contents

1 Submit architecture 1

2 Generics 2

2.1 Principle of generics . 2
2.2 Create generic classes . 2
2.3 Constraints . 3

3 Interfaces 3

3.1 Principle of interfaces . 3
3.2 IEnumerable . 3
3.3 How to implement its own interface? . 3
3.4 Exercise . 5

4 Delegates 6

5 Functions 7

5.1 Variadic functions . 7
5.2 Anonymous functions . 8

5.2.1 Anonymous methods . 9
5.2.2 Lambda expressions . 9

6 Exercises 10

6.1 Generic dynamic array and delegates . 10
6.2 Bonii . 11

7 Deeper and deeper... 11

1 Submit architecture

The architecture for the submit of this practical work does not change much from the ones you are used
seeing. Once again, login_x is to be replaced by your own login.

rendu-tpcs12-login_x.zip

- login_x/

- AUTHORS

- Interface

- Interface (everything except bin and obj directories)

- Interface.sln

- MyGenericTab

- MyGenericTab

- MyGenericTab.sln

1

C#

tp 12 � April 2014
Info-Sup

Epita

2 Generics

2.1 Principle of generics

Generics allow the user to factorize a part of his code by describing classes or methods whose speci�city
of one or many types is not given until the class or the method is declared and instanciated. Their usage
allow one to gain performance and to secure types during compilation (generics avoid using casts which
can be dangerous).

The most common use of generic classes is with collections such as sorted lists, hashtables, stacks,
queues, trees and other collections where operations such as addition and deletion of elements of the
collection are executed in a similar manner independently of the type of data that are stored. Here is an
example of data that you often use and that uses generics, the List type :

// Declaration of a list containing integers

List<Int> my_list = new List<int>();

// Declaration of list containing ACDC

List<ACDC> DreamTeam = new List<ACDC>();

We can see here that lists of any type can be created using generics. More concretely, generics can be
applied to:

� a class

� a structure

� a method

� an interface

� a delegate

It allows you to say that your generic thing can be of any type, by value or by reference. It is then
possible de factorize lines of code and to avoid useless e�orts.

2.2 Create generic classes

Today, we are going to the other side of the template to learn to make generic classes ! To describe a
generic class, simply explain that it depends on non �xed type.
Here is an exemple that explains how to do that:

// Depends on an unknown type that we name T

public class MyBox<T>

{

// Use of T as a normal type

public T value;

// Takes an parameter of type T

public MyBox(T val) { value = val; }

// Returns a value of type T

public T getValue() { return value; }

}

static void Main()

{

MyBox<int> first_box = new MyBox<int>(2);

MyBox<string> second_box = new MyBox<string>("two");

Console.WriteLine(first_box.getValue()); // displays "2"

Console.WriteLine(second_box.getValue()); // displays "two"

}

Very easy, isn't it ?

2

C#

tp 12 � April 2014
Info-Sup

Epita

2.3 Constraints

When you de�ne a generic class, you can apply constraints to the kind of types that the user can use for
the parameters types when he instancies your class. If the user tries to instanciate his class with a type
that is not authorized by a constraint, there will be a compilation error. These restrictions are called
constraints. Constraints are speci�ed thanks to the keyword where.

There are many kinds of constraints. Here are some of them:

� class: the type argument must be a reference type, including any class, interface, delegate or array
type.

� <interface name>: the type argument must be, or implement, the speci�ed interface. Many inter-
face constraints can be speci�ed. The interface that requires the constraints can also be generic.

� <class name>: the type argument must be, or inherit1, from the speci�ed class.

There are other constraints2. We have listed here the most important ones.
Here is an example of constraint:

class G<Y,Z> where Y : IComparable

Here, the Y type must respect the IComparable interface3.
There can also be many constraints for one type: they are separated by commas.

3 Interfaces

3.1 Principle of interfaces

Interfaces are a very important concept of object oriented programming. It consists in de�ning a group
of functionalities like methods, properties, events and indexors. Classes or structures that implement an
interface must imperatively implement every method and property de�ned in the interface.
We use the "interface" keyword to declare them. There is no function body and we cannot instanciate
an interface even if it is close to a class. A class and a structure can implement many interfaces at once.
An interface cannot contain constants, �elds, operators, constructors, destructors or types. Nor can it
contain static members. Members of an interface are automatically stated as public and they cannot
contain any access modi�ers.

3.2 IEnumerable

C# o�ers lots of interfaces, most of which use generics. Do not hesitate to get informed about it. Here is
an example of a sexy C# interface: IEnumerable is an interface allowing the user to browse a container.
It allows amongst other things the use of an object in a "foreach" loop. The only method to implement
in order to comply with this interface is:

IEnumerator GetEnumerator()

3.3 How to implement its own interface?

Nothing prevents you from de�ning your own interface. By convention, its name begins with an "I" and
the �rst two letters are capital letters. Example:

1Heritage &co
2See "Go deeper"
3See the "Interfaces" part below

3

C#

tp 12 � April 2014
Info-Sup

Epita

interface IDimensions

{

float getLength();

float getWidth();

}

class Box : IDimensions

{

float lengthInches;

float widthInches;

Box(float length, float width)

{

lengthInches = length;

widthInches = width;

}

// Implicit but mandatory implementation of IDimensions

float getLength() { return lengthInches; }

float getWidth() { return widthInches; }

static void Main()

{

Box box1 = new Box(30.0f, 20.0f);

// Displays the box dimensions by calling methods of the object

Console.WriteLine("Length : {0} ", box1.getLength());

// displays "Length : 30 "

Console.WriteLine("Width : {0} ", box1.getWidth());

// displays "Width : 20 "

}

}

Here is the same example but with an explicit implementation of the interfaces:

4

C#

tp 12 � April 2014
Info-Sup

Epita

interface IDimensions

{

float getLength();

float getWidth();

}

class Box : IDimensions

{

float lengthInches;

float widthInches;

Box(float length, float width)

{

lengthInches = length;

widthInches = width;

}

// Explicit but mandatory implementation of IDimensions

float IDimensions.getLength() { return lengthInches; }

float IDimensions.getWidth() { return widthInches; }

static void Main()

{

Box box1 = new Box(30.0f, 20.0f);

IDimensions dimensions = (IDimensions)box1;

Console.WriteLine("Length {0}", dimensions.getLength());

Console.WriteLine("Width {0}", dimensions.getWidth());

}

}

3.4 Exercise

Create an "Interface" project in an "Interface" directory.

� Create an ISport interface with at least four functionalities of your choice.

� Create the Volleyball, Football and Rugby classes in such a way that they implement ISport.

� In your Main(), do some tests with instances of the three classes.

5

C#

tp 12 � April 2014
Info-Sup

Epita

4 Delegates

Delegates is a type that de�nes a method signature (and its return type). When you instanciate a
delegate, you associate the instance of your delegate (e.g. the variable) with a method whose signature
is the same as the one de�ned in the delegate.

Here is what it looks like:

public delegate int MyDelegate(int x);

class Program

{

static int square(int x)

{

return x * x;

}

static int minusFortyTwo(int x)

{

return x - 42;

}

static void Main(string[] args)

{

int x = 12;

MyDelegate intFunctions = square;

Console.WriteLine(intFunctions(x));

intFunctions = minusFortyTwo;

Console.WriteLine(intFunctions(x));

}

}

Copy this code, look at what it does and try to understand why.
You must note one thing: there are two functions, square and minusFortyTwo. These two functions

have the same signature and the same return type. They do not do the same thing but the same number
and type of arguments and the same return type.

On the �rst line, we create a new delegate named MyDelegate. Then, in the main() function, we
instanciate this delegate by creating the "intFunctions" variable. We assign to this variable the square

method (without parenthesis - we are not trying to call the function). Then we call our delegate exactly
like we call a function.

intFunctions(x)

This calls the method4 that is in the intFunctions delegate. Once your delegate is instanciated, it can
be used like a function.

In order to understand better what a delegate is, make your own tests.
What is the purpose of a delegate?
Here is an example. You create a class to represent your favorite data structure (list, tree, Fibonacci's

heap) with a sort function in this structure. But you are a great programmer and so you made di�erent
algorithms to sort your data. When you call the sort function, you might want to choose the algorithm
that has to be called. You could do the following :

4An instance of delegate can contain several methods. Indeed, you can write intFunctions = minusFortyTwo; then

intFunctions += square; See what it does.

6

C#

tp 12 � April 2014
Info-Sup

Epita

enum SortAlgo { Bubble, Quick, Intro, Heap };

public void mySort(SortAlgo algo)

{

//do some stuff

if (algo == SortAlgo.Bubble)

//call bublesort

else if (algo == SortAlgo.Heap)

//call heap sort

else if (algo == SortAlgo.Intro)

//call intro sort

else

//throw exception

//do some other stuff

}

But as soon as you add a sort algorithm, you have to change the enum and add an if condition.
With delegates you can do the following:

public delegate void SortAlgo(MySuperDataStruct c);

public void mySort(SortAlgo algo)

{

//do some stuff

algo(/* data to sort*/);

//do some other stuff

}

Here is how to replace all these ugly ifs which are a pain to write. Of course, you can �nd a lot of
usages for the delegates. Sometimes they are not necessary but their use will simplify your life.

5 Functions

5.1 Variadic functions

Since you have started to learn C# , you now know how to create functions with arguments. But do you
know how to create functions with a variable number of arguments ?
Let's take an example : you want a function which is going to write in a �le (with a Stream object)
several objects. In order do this, you could write a function like this one :

void WriteInFile(String path, object l)

{

Stream stream = new FileStream(path, FileMode.Append, FileAccess.Write);

StreamWriter sw = new StreamWriter(stream);

sw.Write(l);

sw.Flush();

sw.Close();

stream.Close();

}

static void Main(string[] args)

{

WriteInFile("file", 5);

WriteInFile("file", 42);

WriteInFile("file", "Object");

WriteInFile("file", 56);

}

7

C#

tp 12 � April 2014
Info-Sup

Epita

As you can see, this would not be very handy if you wanted to write several times in a �le. Obviously
you could change the "object l" by an "Object array(object[] l)", and then iterate on it, but this would
force you to create an array before you could call the function.

This is where the adjective "variadic" makes sense. The goal of this kind of function is simple :
allowing you to call a function with a variable number of objects. For those who have already written
some pieces of code in C, it should remind you of the "printf" function.

To achieve that, we need a new keyword : params. Here is the de�nition and an example from
MSDN :

The params keyword lets you specify a method parameter that takes an argument where the
number of arguments is variable.
No additional parameters are permitted after the params keyword in a method declaration,
and only one params keyword is permitted in a method declaration.

public static void UseParams(params int[] list)

{

for (int i = 0; i < list.Length; i++)

Console.WriteLine(list[i]);

Console.WriteLine();

}

public static void UseParams2(params object[] list)

{

for (int i = 0; i < list.Length; i++)

Console.WriteLine(list[i].GetType() + " " + list[i]);

Console.WriteLine();

}

static void Main(string[] args)

{

UseParams(1, 2, 3);

UseParams2(1, 'a', "test");

int[] myarray = new int[3] {10,11,12};

UseParams(myarray);

}

Here is the way to use the params keyword : "(params typename[] name)". You can call the function
either with a "typename" array or with arguments of type "typename", separated by a comma.

In UseParams2, you should see a new keyword, object, which could actually represent every possible
type.
It is, in fact, what we call an "alias" (a shortcut, if you prefer) for the Object class. This class is the
mother of everything, the son of your son, the master of the gods, and even your old grandma's mother.
Seriously, now that you know how inheritance works, we can tell you the truth: every class inherits,
directly or not, from the Object class. You will �nd more information on MSDN or with your ACDCs
(again). That's why you can write the object keyword to symbolize every type. In the �rst example, where
we wrote "Stream stream = new FileStream(...)", the compiler didn't detect errors, because FileStream
inherits from Stream, so the cast from a FileStream to a Stream doesn't bother us. (Please note that it's
not true in the other way. It's up to you to �nd out why).

5.2 Anonymous functions

Well, now that everything is clear (or not) for you, try to call UseParams2 with the parameter "new
int[3]1, 2, 3". Try to understand why the output is not what you expected.

8

C#

tp 12 � April 2014
Info-Sup

Epita

Let's see what anonymous functions are. As you can guess, an anonymous function is a function...
with no name! It does not help much, and what is the purpose of an unnamed function : how can we
call it if it has no name?

Let's see what MSDN says about it.

An anonymous function is an "inline" instruction or expression that can be used everywhere
where a delegate type is expected. You can use it to initiliaze a named delegate or to give it
as a method parameter instead of a named delegate.

MSDN
Just remember that an anonymous function can be used everywhere where a delegate is expected.
Let's go deeper to see two di�erent types of anonymous functions: lambda expressions and anonymous

methods. Note the di�erence between the anonymous functions and anonymous methods.

5.2.1 Anonymous methods

Anonymous methods allow us amongst other things to give a code bloc as a delegate parameter, which
means that you can create the method that is encapsulated by your delegate directly in the instanciation
of this one.

Here is an example:

// Creation of a delegate

delegate void Del(int x);

// Instanciation of the delegate with an anonymous method

Del d = delegate(int k) { /* your code here*/ };

You can write in your anonymous method (where there is your code here) as if you would code a
function taking an int as a parameter and returning nothing. As you can see, the syntax is quite simple.

You may not see the point of this for now, but once you get used to delegates, you will be happy
to use anonymous methods (and functions generally) instead of creating explicit ones. It is faster and
sometimes more explicit.

Be careful - do not overuse the anonymous method and do not replace all of your methods by anony-
mous ones (and we don't think you want to do this). Use them wisely.

5.2.2 Lambda expressions

Lambda expressions: let's see an explanation from MSDN.

A lambda expression is an anonymous function that you can use to create delegates or expres-
sion tree types. By using lambda expressions, you can write local functions that can be passed
as arguments or returned as the value of function calls. Lambda expressions are particularly
helpful for writing LINQ query expressions.

To create a lambda expression, you specify input parameters (if any) on the left side of the
lambda operator =>, and you put the expression or statement block on the other side. For
example, the lambda expression x => x * x speci�es a parameter that's named x and returns
the value of x squared.

If you do not understand the part explaining the tree types or LINQ, this is normal, and do not worry
- we won't use these notions during this practical work.

The syntax is again quite simple5 :

(input parameters) => expression

If you have only one parameter, then the parentheses are optional. The parameters' type is also
optional in some cases (when the compiler cannot �nd the parameters' type alone).

() => 2 // no parameter

(x, y) => x == y // no need of the types of x and y

(int x, string s) => s.Length > x // you need to specify the types of x and s here

5It should remind you of the function keyword in Caml

9

C#

tp 12 � April 2014
Info-Sup

Epita

6 Exercises

6.1 Generic dynamic array and delegates

In this part of the practical work, we will implement our own data structure : a dynamic array. Dynamic
means that its size can change. If we reach the maximum size of the array, we reallocate a bigger size for
the array.

As you learned new notions during the reading of this TP, we will put them into practice: we will
implement a generic dynamic array, using interfaces, delegates and anonymous functions.

We will give you the methods to implement, their signature, what they have to do, what notion to
use... and you do the rest!

Our class will be called MyGenericTab. Be careful! It must be generic, and we require a constraint
on the type: it has to inherit from the IComparable interface.

It will have the following attributes:

� An array of type T non initialized

� An integer containing the current number of elements in the array

And methods:

� A constructor: initiliazes the array and also its current number of elements

public MyGenericTab<T>() { ... }

� Insert: adds an element to the �rst free position of the array and if the array is full, we reallocate
by doubling the size of the array.

public void Insert(T elt) { ... }

� Delete: removes the element given as parameter of the array, and shifts all the elements so that
there are no holes. Returns true if the removal succeeded, false if not.

public bool Delete(T elt) { ... }

� At: returns the value contained at position i. Throws an exception if the index is invalid.

public T At(int i) { ... }

� mapDelegate: delegate to use for the map function. It has to be declared outside of the class.

public delegate T mapDelegate<T>(T elt);

� Map: applies the delegate given as parameter to all of the array's elements.

public void Map(mapDelegate funct) { ... }

� Sort: sorts the array by using the CompareTo method from the IComparable interface.

public void Quicksort(int left, int right) { ... }

� Print: prints in green the elements for which the predicate given as parameter are true, and in red
if not.

public void Print(/* delegates that returns a boolean and takes as parameter

a T element */) { ... }

10

C#

tp 12 � April 2014
Info-Sup

Epita

6.2 Bonii

� Improved Insert: the insertion is done by respecting the order of the array.

� Improved Delete: if only a third of the array is used, we reallocate the array by dividing its size by
2.

� Select: �nd what it is!

7 Deeper and deeper...

This part is here for those who want to know more because what we have shown here does not cover all
the functionalities of the notions in C#.

We only show you a few features that exist. If you want to know more, Google is your friend!

� Value type

� Reference type

� Default keyword for genericity

� Safe types during compilation thanks to genericity

� new() constraint on a generic parameter

� We cannot implement an interface member explicitly: void ISampleInterface.SampleMethod(), but
it is not so easy...

11

	Submit architecture
	Generics
	Principle of generics
	Create generic classes
	Constraints

	Interfaces
	Principle of interfaces
	IEnumerable
	How to implement its own interface?
	Exercise

	Delegates
	Functions
	Variadic functions
	Anonymous functions
	Anonymous methods
	Lambda expressions

	Exercises
	Generic dynamic array and delegates
	Bonii

	Deeper and deeper...

