CHt Info-Sup
TP 12 — Avril 2014 EpITA

TPC#12 : Génériques, interfaces et délégués!

Table des matiéres

1__Structure du rendul 1
2 La généricité| 2
2.1 Principe de la généricité] L. 2
2.2 Créer des classes gENériques| o o i e e e e e e e 2
2.3 Contraintesl e e e e e e 3
[B_TInterfaces 3
8.1 Principe des interfaces| L Lo e 3
B2 TEnumerable] 3
[3.3__Implémenter sa propre interface[. 00 0oL 3
Bd_Exercicel 5

4 Les délégués| 6
6_Fonctions| 7
[B-1 Tonctions variadiques]. v . v v v e e e e e e e e e 7
0.2 Fonctions anonymes| Lo L e e e 9
[5.2.1 Méthodes anonymes| o 9

5.2.2 xpressions lambdalo oL oL Lo 9
[6__Exercicel 11
6.1 Tableau dynamique générique et délégués| L. 11
B2 Bontll. . . . 11

{7 Plus en profondeur...| 12

1 Structure du rendu

La structure du rendu pour ce TP ne change pas de celles que vous avez ’habitude de voir. Encore
une fois, login_x est & remplacer par votre propre login.

rendu-tpcsl2-login_x.zip
- login_x/

- AUTHORS

- Interface
- Interface (tout sauf bin et obj)
- Interface.sln

- MyGenericTab
- MyGenericTab
- MyGenericTab.sln

/vy

1 17’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

2 La généricité
2.1 Principe de la généricité

Les types génériques permettent de factoriser une partie de votre code en décrivant des classes ou des
méthodes dont la spécification d’un ou de plusieurs types n’est pas donnée jusqu’a ce que la classe ou
la méthode soit déclarée et instanciée. Leur usage permet de gagner en performance et de sécuriser les
types lors de la compilation (les génériques évitent d’utiliser les casts, parfois dangereux).

L’utilisation la plus courante des classes génériques est avec des collections comme les listes triées, les
tables de hachage, les piles, les files d’attente, les arborescences et autres collections ot les opérations telles
que 'ajout et la suppression d’éléments de la collection sont exécutées de facon relativement similaire
indépendamment du type des données qui sont stockées. Voici un exemple de type que vous utilisez depuis
longtemps utilisant les génériques, le type List :

// Déclaration d’une liste contenant des entiers
List<Int> my_list = new List<int>();

// Déclaration d’une liste contenant des ACDC
List<ACDC> DreamTeam = new List<ACDC>();

On voit bien qu’on peut créer des listes de n’importe quel type avec ce procédé.

Plus concrétement, la généricité peut s’appliquer & :

— une classe

— une structure

— une méthode

— une interface

— un délégué
Elle permet de dire que votre ... truc générique peut prendre en compte un type quelconque, que ce soit
de valeur ou de référence. Il est dés lors possible de factoriser des lignes de codes, et de s’éviter des efforts
inutiles.

2.2 Créer des classes génériques

Aujourd’hui, nous allons aller de 'autre coté de la template en apprenant a faire des classes génériques !
Pour décrire une classe générique, il suffit d’expliquer qu’elle dépend d’un type non fixé.
Voici un petit exemple commenté pour expliquer comment procéder :

// Dépend d’un type inconnu qu’on nomme T
public class MyBox<T>

{
// Utilisation de T comme un type habituel
public T value;
// Prend un paramétre de type T
public MyBox(T val) { value = val; }
// Renvoie une valeur de type T
public T getValue() { return value; }
}
static void Main()
{
MyBox<int> first_box = new MyBox<int>(2);
MyBox<string> second_box = new MyBox<string>("two");
Console.WriteLine(first_box.getValue()); // affiche "2"
Console.WriteLine(second_box.getValue()); // affiche "two"
}

Super facile non?

/vy

2 17’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

2.3 Contraintes

Lorsque vous définissez une classe générique, vous pouvez appliquer des restrictions aux genres de types
que l'utilisateur peut utiliser pour les arguments de type lorsqu’il instancie votre classe. Si I'utilisateur
essaie d’instancier votre classe avec un type qui n’est pas autorisé par une contrainte, il en résultera une
erreur de compilation. Ces restrictions sont appelées des contraintes. Les contraintes sont spécifiées a
I’aide du mot clé contextuel where.

Il existe plusieurs types de contraintes, en voici quelques-unes :

— classe : L’argument de type doit étre un type référence, y compris tout type classe, interface, délégué

ou tableau.

— <nom d’interface> : L’argument de type doit étre ou doit implémenter 'interface spécifiée. Plusieurs
contraintes d’interface peuvent étre spécifiées. L’interface qui impose les contraintes peut également
étre générique.

— <nom de classe de base> : L’argument de type doit étre ou doit dériver de la classe de base
spécifiée.

Ilyena d’autresﬂ on vous a listé les plus importantes.

Voici un exemple de contrainte :

class G<Y,Z> where Y : IComparable

Ici, le type Y doit respecter l’interfacerﬂ IComparable. Il peut aussi y avoir plusieurs contraintes pour un
type : elles sont séparées par des virgules.

3 Interfaces

3.1 Principe des interfaces

Les interfaces sont un concept trés important de la programmation orientée objet. Elle consiste & définir
un ensemble de fonctionnalités comme des méthodes, des propriétés, des événements et des indexeurs.
Les classes ou les structures qui implémentent une interface doivent impérativement implémenter toutes
les méthodes et propriétés définies dans l'interface.

On utilise le mot-clef "interface" pour les déclarer. Il n’y a aucun corps de fonction et on ne peut instancier
une interface malgré sa proximité avec les classes. Une classe et une structure peuvent implémenter
plusieurs interfaces & la fois.

Une interface ne peut pas contenir de constantes, de champs, d’opérateurs, de constructeurs d’instances,
de destructeurs ou de types. Elle ne peut pas contenir de membres statiques. Les membres d’interface
sont automatiquement publics et ils ne peuvent contenir aucun modificateur d’acceés.

3.2 IEnumerable

Le C# propose pleins d’interfaces dont la majorité utilise les génériques. N’hésitez pas a vous ren-
seigner dessus. En attendant, voici un exemple d’interface de C# sexy : [Enumerable est une interface
permettant de parcourir un conteneur. Celle-ci permet entre autres d’utiliser un objet dans une boucle
"foreach". La seule méthode & implémenter pou respecter cette interface est :

| IEnumerator GetEnumerator () |

3.3 Implémenter sa propre interface

Rien ne vous empéche de définir votre propre interface. Par convention, leur nom commence par un
"I" et les deux premiéres lettres sont en majuscules. Exemple :

1. Héritage, toussa toussa...
2. Voir "Plus en profondeur..."
3. Voir la partie "Interfaces"

/vy

3 17’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

interface IDimensions

{
float getLength();
float getWidth();
}
class Box : IDimensions
{
float lengthInches;
float widthInches;
Box(float length, float width)
{
lengthInches = length;
widthInches = width;
}
// Implémentation implicite mais obligatoire de IDimensions
float getLength() { return lengthInches; }
float getWidth() { return widthInches; }
static void Main()
{
Box boxl = new Box(30.0f, 20.0f);
// Affiche les dimensions de la boite grice aux méthodes depuis 1l’objet
Console.WriteLine("Length : {0} ", boxl.getLength());
// affiche "Length : 30 "
Console.WriteLine("Width : {0} ", boxl.getWidth());
// affiche "Width : 20 "
}
}

Voici le méme exemple mais avec une implémentation explicite des interfaces :

/vy

4 TS oANGERGUS To CODE ALONE

C##
TP 12 — Avril 2014

Info-Sup
EpriTA

interface IDimensions
{
float getLength();
float getWidth();

class Box : IDimensions

float lengthInches;
float widthInches;

Box(float length, float width)
{
lengthInches = length;
widthInches = width;

// Implémentation explicite mais obligatoire de IDimensions
float IDimensions.getLength() { return lengthInches; }
float IDimensions.getWidth() { return widthInches; }

static void Main()

{
Box boxl = new Box(30.0f, 20.0f);
IDimensions dimensions = (IDimensions)box1;
Console.WriteLine("Length {0}", dimensions.getLength());
Console.WriteLine("Width {0}", dimensions.getWidth()):

3.4 Exercice

Créer le projet Interface dans le dossier Interface.
— Créez une interface ISport avec au moins quatre fonctionnalités de votre choix.

— Créez les classes Volleyball, Football et Rugby de maniére & ce qu’elle implémente ISport. Le reste

est libre!
— Dans votre Main(), faites des tests avec des instances des trois classes.

/vy

ITS DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

4 Les délégués

Les délégués (delegate en anglais) est un type qui définit une signature de méthode (et son type
de retour). Quand vous instanciez un délégué vous associez l'instance de votre délégué (la variable pour
ceux qui seraient un peu perdus) avec une méthode dont la signature est la méme que celle définie dans
le délégué.

Voici & quoi ¢a ressemble :

public delegate int MyDelegate(int x);
class Program
{
static int square(int x)
{
return x * X;
}
static int minusFortyTwo(int x)
{
return x - 42;
}
static void Main(string[] args)
{
int x = 12;
MyDelegate intFunctions = square;
Console.WriteLine(intFunctions(x));
intFunctions = minusFortyTwo;
Console.WriteLine(intFunctions(x));
}
}

Recopiez ce code, regardez ce qu'il fait et essayez de comprendre pourquoi.

1l faut tout d’abord remarquer une chose : il y a deux fonctions, square et minusFortyTwo. Ces deux
fonctions ont la méme signature et le méme type de retour. Elle ne font pas la méme chose mais elles ont
le méme nombre et types d’arguments et le méme type de retour.

A la premiére ligne on crée un nouveau délégué appelé MyDelegate. Ensuite dans la fonction main on
instancie ce délégué, en créant la variable intFunctions. On lui affecte la méthode square (sans parenthéses,
on est pas en train de faire un appel de fonction). Ensuite on appelle notre délégué exactement comme
une fonction.

| intFunctions(x) |

Ceci appelle la méthode[ﬂ qui est dans le délégué intFunctions. Une fois votre délégué instancié il peut
s’utiliser exactement comme une fonction.

Pour mieux comprendre ce qu’est un délégué entrainez vous, faites vos propres essais.

Quel est I'utilité ?

Voici un exemple. Vous créez une classe pour représenter votre structure de données préférée (liste,
arbre, tas de Fibonacciﬂ), avec notamment une fonction de tri dans cette structure. Mais vous étes super
forts, du coup vous avez fait plusieurs algorithmes pour trier vos données. Quand vous appelez la fonction
de tri vous voulez pouvoir dire "je veux que tel algorithme soit appelé".

Vous pourriez faire :

4. Une instance de délégué peut contenir plusieurs méthodes. En effet vous pouvez écrire intFunctions = minusFortyTwo ;

puis intFunctions += square; Je vous laisse voir ce que ¢a fait par vous méme.
ACDC
2016

5. celui qui implémente un tas de Fibonnaci pendant le TP aura beaucoup de points bonus
6 11°5 DANSEROUS TO CODE ALOIE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

enum SortAlgo { Bubble, Quick, Intro, Heap };
public void mySort (SortAlgo algo)
{
//do some stuff
if (algo == SortAlgo.Bubble)
//call bublesort
else if (algo == SortAlgo.Heap)
//call heap sort
else if (algo == SortAlgo.Intro)
//call intro sort
else
//throw exception
//do some other stuff

3

Et dés que vous ajoutez un algorithme de tri, il faut modifier I’enum et rajouter un if.
Avec des délégués vous pouvez faire :

public delegate void SortAlgo(MySuperDataStruct c);
public void mySort (SortAlgo algo)
{
//do some stuff
algo(/* data to sort*/);
//do some other stuff
}

Voila comment remplacer tous ces if pas beaux et longs (chiants ?) & écrire. Bien str vous pouvez trou-
ver beaucoup d’autres utilisations aux delegates, parfois ils ne seront pas nécessaires mais leur utilisation
vous facilitera la vie.

5 Fonctions

5.1 Fonctions variadiques

Vous savez depuis longtemps comment créer des fonctions avec arguments. Mais savez-vous créer des
fonctions avec un nombre variable d’arguments ?
Prenons un exemple, vous avez une fonction qui va écrire dans un fichier (avec un Stream) différents
objets. Pour cela, vous pourriez créer une fonction de ce genre :

void WriteInFile(String path, object 1)

{
Stream stream = new FileStream(path, FileMode.Append, FileAccess.Write);
StreamWriter sw = new StreamWriter(stream);

sw.Write(1);
sw.Flush();

sw.Close();
stream.Close();

static void Main(string[] args)
{

WriteInFile("file", 5);
WriteInFile("file", 42);
WriteInFile("file", "Object");
WriteInFile("file", 56);

}

/vy

7 TS oANGERGUS To CODE ALONE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

Comme vous pouvez le voir, tout ca n’est pas trés pratique si on veut effectuer des écritures a la
suite. Bien entendu, on pourrait changer le "object 1" par un tableau d’Object ("object[] 1"), puis faire
un parcours, tout ¢a nous obligerait & créer un tableau avant de faire I’appel a la fonction WriteInFile.

C’est 1a que le terme "variadique" entre en scéne. Le principe des fonctions variadiques est simple :
permettre I’appel & une fonction avec un nombre variable d’objets. Pour ceux qui ont déja codé en C,
rappelez-vous la fonction "printf".

Pour réaliser ceci, nous avons besoin d’un nouveau mot clé : params. Voici la définition et I’exemple
fournis par MSDN :

The params keyword lets you specify a method parameter that takes an argument where the
number of arguments is variable.

No additional parameters are permitted after the params keyword in a method declaration,
and only one params keyword is permitted in a method declaration.

public static void UseParams(params int[] list)

{
for (int i = 0; i < list.Length; i++)
Console.WriteLine(1list[i]);
Console.WriteLine();
}
public static void UseParams2(params object[] list)
{
for (int i = 0; i < list.Length; i++)
Console.WriteLine(1list[i].GetType() + " " + list[il);
Console.WriteLine() ;
}
static void Main(string[] args)
{
UseParams(1, 2, 3);
UseParams2(1, ’a’, "test");
int[] myarray = new int[3] {10,11,12};
UseParams (myarray) ;
}

Comment vous pouvez le voir, le mot params s’utilise de cette maniére "(params typename[] name)".
Vous pouvez appeler la fonction avec soit un tableau du type "typename", soit avec plusieurs élements
du type "typename" séparés par une virgule.

Dans UseParams2, vous pouvez remarquer 'utilisation du mot clé object, qui peut en fait représenter
tous les types possibles.
Il représente en fait un alias (un raccourci, si vous préférez) pour la classe Object. Cette classe est en fait
la mére de toute chose, le pére de vos péres, la mére du fils de votre soeur, et méme celle de votre feu
grand oncle Marcel.
Plus sérieusement, maintenant que vous étes plus ou moins familier avec la notion d’héritage, nous pou-
vons vous dire la vérité : toutes les classes héritent directement ou indirectement de cette classe. Vous
trouverez plus d’informations sur MSDN ou auprés des vos ACDCs (encore une fois). C’est donc pour
cette raison que vous pouvez placer le mot object pour représenter tous les types : ils héritent tous de
lui. Dans le premier exemple, ou 'on écrivait " Stream stream — new FileStream(...) ", le compilateur
ne sortait pas d’erreurs car FileStream hérite de Stream, et donc la conversion de FileStream vers un
Stream ne posent aucun probléme (notez que I'inverse n’est pas vrai, nous vous laissons deviner pourquoi).

Maintenant que vous savez tout ceci, essayez d’appeler UseParams2 avec comme parameétre "new
int[3]1, 2, 3". Nous vous laissons deviner tout seul pourquoi le résultat n’est pas celui que vous attendiez.

/vy

8 17’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

5.2 Fonctions anonymes

Nous allons voir ce que sont les fonctions anonymes. Comme vous pouvez vous en douter, une fonction
anonyme est une fonction "sans nom". Ca ne vous aide pas beaucoup, et puis une fonction sans nom c’est
un peu con, non ? Comment I’appeler si elle n’a pas de nom ?

Allons voir ce que MSDN nous dit 1a dessus.

Une fonction anonyme est une instruction ou expression "inline" qui peut étre utilisée partout
ou un type délégué est attendu. Vous pouvez l'utiliser pour initialiser un délégué nommé ou
la passer a la place d’un type délégué nommé en tant que paramétre de méthode. MSDN

Retenez donc qu’une fonction anonyme peut étre utilisée partout ot un délégué est attendu.
Entrons plus dans le détail pour voir deux types de fonctions anonymes : les expressions lambda et
les méthodes anonymes (notez la différence entre fonctions anonymes et méthodes anonymes).

5.2.1 Méthodes anonymes

Les méthodes anonymes servent entre autres & passer un bloc de code en paramétre de délégué,
c’est & dire que vous pouvez créer la méthode qui est encapsulée par votre délégué directement dans
I'instanciation de celui-ci.

Voici un exemple :

// Création d’un délégué
delegate void Del(int x);

// Instanciation du délégué avec une méthode anonyme
Del d = delegate(int k) { /* votre code ici */ };

Vous pouvez écrire dans votre méthode anonyme (14 o il y a votre code ici) comme si vous codiez dans
une fonction prenant un int en paramétre et ne renvoyant rien. Comme vous pouvez le voir la syntaxe
est assez simple.

Vous ne voyez peut-étre pas 1'utilité pour 'instant, mais une fois que vous serez habitués aux délégués
vous serez contents de pouvoir utiliser les méthodes (et fonctions en général) anonymes au lieu d’en créer
une explicite. C’est plus rapide & faire et parfois plus explicite.

Attention, il ne faut pas en abuser et utiliser les méthodes anonymes partout, ne remplacez pas toutes
vos méthodes par des méthodes anonymes (en plus nous ne pensons pas que vous ayez envie de le faire).
Utilisez les & bon escient.

5.2.2 Expressions lambda

Les expressions lambda (lambda expressions en anglais, oui oui c’est une remarque utile). Encore
une fois, une explication venant de MSDN (MSDN est votre ami).

A lambda expression is an anonymous function that you can use to create delegates or expres-
sion tree types. By using lambda expressions, you can write local functions that can be passed
as arguments or returned as the value of function calls. Lambda expressions are particularly
helpful for writing LINQ query expressions.

To create a lambda expression, you specify input parameters (if any) on the left side of the
lambda operator =>, and you put the expression or statement block on the other side. For
example, the lambda expression x —> x * x specifies a parameter that’s named x and returns
the value of x squared.

Si vous ne comprenez pas la partie sur les types d’arborescence ou sur LINQ c’est normal, et ne vous
inquiétez pas nous n’utiliserons pas ces notions pendant le TP.
La syntaxe encore une fois est assez simpleﬁ :

(input parameters) => expression |

/vy

9 17’5 DANGEROUS TO CODE ALONE

6. Ca devrait vous rappeler le mot clef function en Caml

CHt Info-Sup
TP 12 — Avril 2014 EpITA

Si vous n’avez qu’un seul parameétre, alors les parenthéses sont facultatives. Le type des paramétres est
lui aussi facultatif dans certains cas (quand le compilateur n’arrive pas a trouver le type des paramétres
tout seul).

() => 2 // aucun paramétre
(x, y) => x == y // pas besoin des types de x et y
(int x, string s) => s.Length > x // il faut spécifier les types

/vy

10 11’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

6 Exercice

6.1 Tableau dynamique générique et délégués

Dans cette partie, on va implémenter notre propre structure de données : un tableau dynamique.
Dynamique signifie que sa taille peut changer. Si on arrive a la taille max du tableau, on le réalloue avec
une taille plus grande tout en récupérant ses données.

Etant donné que vous avez appris de nouvelles notions lors de la lecture de ce TP, on va les mettre
en application : on va implémenter un tableau dynamique générique, tout en se servant d’interface, de
délégués et de fonctions anonymes.

On vous donnera les méthodes & implémenter ainsi que leur signature et ce qu’elles doivent faire, et
quelle "notion" utiliser... & vous de faire le reste!

Notre classe, se nommera MyGenericTab. Attention! Elle doit étre générique, et on vous impose une
contrainte sur le type : il doit hérité de 'interface IComparable.

Elle aura comme attributs :

— Un tableau de type T non initialisé

— Un entier contenant le nombre d’éléments actuels dans le tableau

Les méthodes :
— Un constructeur : initialise le tableau ainsi que son nombre d’éléments contenus

|public MyGenericTab<T>() { ... }

— Insert : ajoute un élément & la premiére position libre du tableau, si le tableau est plein, on le
réalloue en doublant la taille du tableau !

|public void Insert(T elt) { ... }

— Delete : supprime ’élément passé en argument dans le tableau, et on redécale tous les éléments
pour qu’il n’y ait pas de trous. Renvoie vrai si la suppression a marché, faux sinon.

|public bool Delete(T elt) { ... }

— At : renvoie la iéme valeur. Déclenche une exception si I'index est invalide.

|pub1ic T At(int i) { ... }

— mapDelegate : délégué & utiliser pour map. Il est & déclarer & 'extérieur de la classe.

|public delegate T mapDelegate<T>(T elt);

— Map : Applique le délégué passé en paramétre & tous les éléments du tableau

|pub1ic void Map(mapDelegate funct) { ... }

— Sort : Trie le tableau en se servant de la méthode CompareTo de IComparable

|public void Quicksort(int left, int right) { ... }

— Print : Affiche en vert les éléments pour lesquels le prédicat est passé en parameétre (délégué), sinon
affiche I’élément en rouge.

public void Print(/* délégué qui renvoit un booléen et prend en paramétre
un élément T */) { ... }

6.2 Bonii

— Insert amélioré : I'insertion se fait en respectant I’ordre du tableau

— Delete amélioré : Si seulement un tiers du tableau est utilisé, on réalloue le tableau en divisant sa
taille par 2.

— Select (cherchez ce que c’est)

/vy

11 11’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 12 — Avril 2014 EpITA

7 Plus en profondeur...

Cette partie est 14 pour ceux qui désirent en savoir plus, car ce qui a été montré n’englobe pas toutes
les fonctionnalités des notions citées en C+#.

On vous montre juste quelques particularités qui existent, si vous voulez en savoir plus, google est
votre ami, ou profitez-en pour essayer de mettre une colle & votre ACDC.

— Type valeur

— Type référence

— Mot clé default pour la généricité

— Typage sécurisé lors de la compilation grace a la généricité

— Contrainte new() sur un parameétre générique

— On peut implémenter un membre d’interface explicitement : void ISamplelnterface.SampleMethod(),

mais c’est pas aussi simple...

/vy

12 11’5 DANGEROUS TO CODE ALONE

	Structure du rendu
	La généricité
	Principe de la généricité
	Créer des classes génériques
	Contraintes

	Interfaces
	Principe des interfaces
	IEnumerable
	Implémenter sa propre interface
	Exercice

	Les délégués
	Fonctions
	Fonctions variadiques
	Fonctions anonymes
	Méthodes anonymes
	Expressions lambda

	Exercice
	Tableau dynamique générique et délégués
	Bonii

	Plus en profondeur...

