
C#

tp 13 � Avril 2014
Info-Sup

Epita

TPC#13 : PixelPower

1 Structure du rendu

Voici la structure du rendu pour ce TP :

rendu-tpX-login_x.zip/

login_x/

AUTHORS // '* login_x'

README // ne mettez un README que si vous avez quelque chose à préciser

PixelPower/ // contient tout ce qu'il faut pour compiler

Vous ne devez pas rendre de code qui ne compile pas !
Véri�ez bien avant d'envoyer votre �chier .zip que vous pouvez dézipper, ouvrir votre solution .sln

sans erreurs et compiler.

2 Introduction

Ce tp a pour but de vous faire faire un mini paint avec la possibilité de dessiner, e�acer, changer la
couleur du pinceau etc...

Mais ce n'est pas tout, vous allez aussi implémenter un mode pixelpower qui va animer votre image
avec une pseudo gravité.

Vous serez libres d'implémenter votre code comme vous le voulez, les prototypes de fonctions ne sont
là qu'à titre indicatif. Vous serez noté par étapes donc ne faites pas l'étape N+1 si vous n'avez pas �ni
l'étape N.

3 Le projet

Avant de commencer récupérez le dossier PixelPower qui contient la solution ainsi que tous les �chiers
de base qui vous seront utiles.

3.1 Etape 1 : Piece of cake

Ouvrez le �chier main.cs, dans le constructeur chargez une nouvelle texture2D dans une variable qu'on
appelera baseimage. Dans la fonction draw dessinez baseimage. Si tout c'est bien passé vous devriez voir
une image apparaître dans votre fenêtre lorsque vous compilez. Pensez à écrire 'sb.Draw(' et regardez
ensuite les surcharges qui vous sont proposés par notre cher Visual studio.

Figure 1 � a piece of cake

1



C#

tp 13 � Avril 2014
Info-Sup

Epita

3.2 Etape 2 : Two pieces of cake

Créez une classe Map. A l'intérieur de la classe ajoutez deux variables statiques height et width.
Grâce à cela vous allez pouvoir accéder à partir de n'importe quel classe de votre programme à ces deux
variables. Essayez par vous même en écrivant dans le main "Map." (vous verrez les deux propriétés être
proposées par visual studio).

Initialisez ces deux variables avec la taille de baseimage juste après le chargement de ce dernier.

Pour �nir ouvrez le �chier game1.cs et écrivez les lignes suivantes après la création de Main.

graphics.PreferredBackBufferHeight = Map.height;

graphics.PreferredBackBufferWidth = Map.width;

graphics.ApplyChanges();

Ce bout de code va permettre de mettre la dimension de l'écran de rendu aux dimensions de baseimage.
Essayez de compiler vous verrez normalement une image avec un petit camion, des traits noirs et un hibou.

Figure 2 � Two pieces of cake

3.3 Etape 3 : Help me !

Créez une classe Help qui sera instanciée dans le main. Cette classe devra avoir au moins une méthode
Draw pour l'a�chage. Lors du lancement de votre programme il faut que un petit texte 'help : H' s'a�che
en haut à gauche de votre écran. Si l'utilisateur appuye avec grâce et volupté sur la touche 'H' une aide
doit s'a�cher. S'il réappuye (toujours avec grâce et volupté) sur H l'aide disparaît et le texte 'help : H'
s'a�che de nouveau en haut à gauche de l'écran.

Vous êtes libre de l'implémentation mais nous vous conseillons de mettre un booléen 'activated' (avec
le getter qui va avec) dans la classe Help qui permettra de savoir s'il faut a�cher de l'aide ou non.

Pour vous aider sur les entrées clavier/souris vous pouvez utiliser la classe Inputs.cs (codé par nos
soins), pour l'utiliser tapez simplement 'Inputs.' et vous verrez plusieurs méthodes vous être proposés.

Exemple pour savoir si un utilisateur a tapé sur la touche 'X'.

if (Inputs.isKeyRelease(Keys.X))

Vous devez rajouter au fur et à mesure du tp du texte d'aide dans cette classe.

3.4 Etape 4 : Brush display

Ajoutez l'a�chage de la brush.
Vous avez l'image dans votre conteneur qui s'appelle brush.png. Pour le positionnement de la souris
n'oubliez pas la classe Inputs qui pourra vous aider grandement.

3.5 Etape 5 : Brush2 bigger and smaller

Changez la taille de la brosse avec les touches + et - de votre clavier. N'oubliez pas de mettre à jour
la classe Help.

2



C#

tp 13 � Avril 2014
Info-Sup

Epita

Figure 3 � Un exemple à quoi pourrait ressembler votre aide à la �n du tp

3.6 Etape 6 : Let's draw something

Pour pouvoir modi�er notre image en temps réel on va convertir la texture en un tableau de Color,
ce tableau sera utilisé pour la modi�cation pixel par pixel de notre image.

Commencez par créer une propriété de la classe Main qui sera un tableau de Color de dimension
height*width de votre image que vous appelerez pixels.

Ensuite, ajoutez cette fonction dans votre �chier Main qui vous permettra de récupérer l'image Tex-
ture2D sous la forme d'un tableau de Color.

private Color[] get_color_data(Texture2D texture)

{

Color[] data = new Color[texture.Height * texture.Width];

texture.GetData(data);

return data;

}

Puis appelez le avec ce bout de code

pixels = get_color_data(baseimage);

pixels contient maintenant tous les pixels sous la forme d'un tableau à une dimension.

Pour �nir mettez ce bout de code au début de votre fonction Draw du Main.

/* unset curr texture */

baseimage.GraphicsDevice.Textures[0] = null;

/* set new texture that has been computed */

baseimage.SetData(pixels);

Grâce à ces deux lignes votre tableau pixels est converti en Texture2D et stocké dans baseimage avant
d'être dessiné.

Maintenant implémentez la fonction SetPixel dont le prototype pourrait être :

public void SetPixel(int X, int Y, Color c, Color[] pixels)

N'oubliez pas d'utiliser ce que vous avez appris lors de votre tp sur les boucles pour convertir les positions
X Y d'un tableau en deux dimensions à un index dans un tabeau à une dimension et vice versa.

3



C#

tp 13 � Avril 2014
Info-Sup

Epita

Lorsque l'utilisateur enfonce la touche 'D' vous devez utiliser la fonction SetPixel pour transformer les
pixels à l'index X,Y de votre tableau pixels. Vous pouvez mettre la couleur que vous voulez pour l'instant.

Normalement vous devez être capable de dessiner un trait �n avec la touche 'D' lorsque vous lancez
votre programme.

3.7 Etape 7 : Variable size drawing

Implémentez la fonction SetPixels qui va dessiner des pixels par rapport au rayon de notre brush. Un
exemple de prototype pourrait être :

SetPixels(int X, int Y, Color c, Color[] pixels, int brush_radius)

Si vous avez bien fait votre boulot vous êtes maintenant capable de dessiner de jolis traits de couleur de
la même taille que votre brush.

3.8 Etape 8 : Erase

Implémentez l'e�açage de pixels lorsque l'utilisateur tape sur la touche 'E'. Pensez à utiliser ce que
vous avez fait juste avant ! ! ! Normalement cette étape est très rapide (<2min) si tout a été bien fait
auparavant.

Un pixel vide est le pixel de RGBA = 0,0,0,0.

3.9 Etape 9 : Reinit

Implémentez la restauration de votre image de départ lorsque l'utilisateur tape sur la touche 'I'.

3.10 Etape 10 : ColorPicker display

Impléméntez l'a�chage ou pas du colorpicker lorsque l'utilisateur tape sur la touche 'C'. Utilisez la
classe ColorPicker déjà disponible dans votre projet pour gagner du temps. Pensez à décommenter le
code ligne 21 dans le contructeur pour qu'il fonctionne.

3.11 Etape 11 : Pick a color

Ecrivez le code qui permet de récupérer la couleur lorsque l'utilisateur clique sur le bouton gauche de
sa souris sur le colorpicker (stockez la par exemple dans une propriété de la classe Main 'curr_color').
Essayez de dessiner avec di�érentes couleurs, si cela marche c'est que cette étape est validée.

N'oubliez pas d'utiliser la méthode getColor() de la classe ColorPicker !

3.12 Etape 12 : PixelPower

Créer une classe PixelPower avec une méthode Update() qui prend en paramètre votre tableau de Co-
lor 'pixels'. Nous allons considérer que tous les pixels dont la propriété alpha n'est pas maximale doivent
être soumis à la gravité, nous les appelerons désormais les pixels dynamiques.

Parcourez le tableau de pixels en partant du bas du tableau pour mettre à jour les pixels de la façon
suivante (le pixel sombre est la case du tableau pixels que vous êtes en train de traîter, les cases gris clair
sont celles d'un pixel non vide et les case blanches représentent les pixels vides RGBA=0) :

Figure 4 � Si le pixel en dessous est vide on déplace le pixel d'une case vers le bas

4



C#

tp 13 � Avril 2014
Info-Sup

Epita

Figure 5 � Si le pixel en dessous n'est pas vide et que les deux pixels adjacents sont vides alors on
déplace aléatoirement le pixel sur l'une des deux cases

Figure 6 � Si le pixel en dessous et le pixel en bas à gauche ne sont pas vides mais le pixel en bas à
droite est vide, alors on place le pixel dessus

Figure 7 � Si le pixel en dessous et le pixel en bas à droite ne sont pas vides mais le pixel en bas à
gauche est vide, alors on place le pixel dessus

Figure 8 � Si le pixel en dessous et les pixels adjacents horizontalement ne sont pas vides, alors on ne
fait rien

Figure 9 � Si le pixel en dessous et les pixels adjacents ne sont pas vides, alors on ne fait rien

Figure 10 � Le pixel ne peut pas se mettre en bas à gauche car il est bloqué par une case horizontale

Figure 11 � Idem mais dans l'autre sens

Appelez votre fonction update() dans la fonction update du �chier Main.cs. Normalement vous verrez
le camion tomber vers le bas et s'écouler le long des traits noirs.

5



C#

tp 13 � Avril 2014
Info-Sup

Epita

3.13 Etape 13 : PixelPower Activate !

Ajoutez la touche 'espace' pour activer désactiver le mode pixelpower.

3.14 Etape 14 : Make dynamic

Ajoutez la touche 'M' pour rendre les pixels sous la brush dynamiques.

3.15 Etape 15 : Draw dynamic pixels

Ajoutez la touche 'L' pour dessiner des pixels dynamiques.

4 Conclusion

N'oubliez pas de mettre à jour votre classe Help. Le correcteur se basera sur ce que vous avez marqué
là dedans pour tester votre programme.

6


	Structure du rendu
	Introduction
	Le projet
	Etape 1 : Piece of cake
	Etape 2 : Two pieces of cake
	Etape 3 : Help me !
	Etape 4 : Brush display
	Etape 5 : Brush2 bigger and smaller
	Etape 6 : Let's draw something
	Etape 7 : Variable size drawing
	Etape 8 : Erase
	Etape 9 : Reinit
	Etape 10 : ColorPicker display
	Etape 11 : Pick a color
	Etape 12 : PixelPower
	Etape 13 : PixelPower Activate !
	Etape 14 : Make dynamic
	Etape 15 : Draw dynamic pixels

	Conclusion

