
C#

tp 07 � February 2014
Info-Sup

Epita

TP C#7: My farm

1 Do you remember OOP ?

1.1 Object-oriented programming

In previous workshops you discovered what object-oriented programming is. Today we are
going to learn heritage in C# . But before that here, are a few reminders:

Object-oriented programming (as known as OOP) is a programming paradigm. Program-
ming paradigms are ways of thinking to solve problems. You already know one: functional
programming since you learned Caml. There are lots of di�erent programming paradigms (see
https://en.wikipedia.org/wiki/Object-oriented_programming).

1.2 Lost objects

The main idea behind OOP is that everything can be represented as an object. Each object has
its own features and can interacts with others. Before creating an object, we must declare it in a
class : a class is a description of what the object is (attributes) and what can it do (methods).
An object is an instantiation (a concrete version) of the class. You can use the following analogy
to understand: a blueprint (the class) describes how a building should be. With it, we can build
one or more buildings (objects). Look at the code below:

// Class definition

public Class ACDC

{

// Public attributes

public string gender;

public float height;

// Private attribute

private int intelligence;

// Class constructor

public ACDC(float height, int intelligence)

{

gender = "unknown";

this.height = height;

this.intelligence = intelligence;

}

// Methods

public void listen(string name)

{

Console.WriteLine("I listen you, " + name);

}

1

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

public void explain()

{

Console.WriteLine("RTFM");

}

public int attack(int nervousness)

{

return nervousness * 5;

}

public void run()

{

}

}

// Creation of an ACDC object

ACDC acdc;

acdc = new ACDC(0.41f, 1);

// or

ACDC acdc = new ACDC(0.41f, 1);

// Acces and/or modification of an object field

acdc.gender = "superhero";

acdc.run();

You see, it is not di�cult! Fortunately, OOP is considerably more powerful. Now, let's go for
serious business.

2 Become a farmer

2.1 Dwarf and farm

Your old uncle O'Brien, who died recently, was a one-legged dwarf farmer who enjoyed dancing
around totems. One evening, he received the prophecy indicating that you will inherit his farm
at his death. So you are the proud owner of a small farm and you must take care of it, otherwise
the curse will fall on you.

The problem is that you are not a good farmer, and it is not easy work. Fortunately your
ACDCs are here to help you.

2.2 The project

The goal of this workshop is to build a standalone environment, your farm, where animals and
plants will move according to speci�c rules. It is like a game of life, but the farmer version.

Work to do

Get the XNA's project on http://perso.epita.fr/�acdc. You will �nd a Visual Studio solution
in which the graphic part is already done. You must hand in the whole solution (without bin/
and obj/ folders) in a folder named as your ACDCs wish. Do not forget the AUTHORS �le.

2

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

Of course, your code must compile, be indented and commented. Otherwise your grade will be
null.

3 The farm animals

3.1 Your �rst animal

The �rst thing to do is to classify the di�erent entities of the farm. It is important to know
what we are talking about when we discover a new environment.

In a farm there are animals. These animals have some aspects in common. We can describe
them in a class.

Create a new �le called Animal.cs in which you will write a class Animal which has a private
attribute int nb_legs and two public attributes: pos_x and pos_y of type int. You have to
de�ne a constructor:

public Animal(int nb_legs, int pos_x, int pos_y)

3.2 Animal inheritance

You have just created the Animal class but it would be nice to be a little more explicit. We
will create the class Pony. This class will inherit from the Animal class.

Speci�cally, we will create a relationship between these two classes so that Pony inherits from
Animal:

Class Pony : public Animal

{

// Some code here

}

An inherited class means that the public �elds that you de�ned in the Animal class will also
be present in every Pony object ! It is as if all the code is set as public in the Animal class was
copied to the Pony class (though this is not really the case).

What about private �elds? Those are not inherited. For example, if you create a Pony object,
it will not have a nb_legs �eld. Fortunately there is another visibility level between public and
private: the protected level. It is used for �elds which are only accessible from a class and its
children (its heirs).

The most important thing to understand in inheritance is that it represents a relation is a. A
pony is a particular animal, so the Pony class inherits from the Animal class. A motorbike and
a car are speci�c vehicles. So we could create the Motorbike and Car classes that inherit from a
Vehicle class. In poker, a color is not a card. So a Color class therefore does not inherit from
a Card class.

3

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

Work to do

Change the code of Animal class so its child will be able to access to its private attributes.
Create the Pony class in the �le Animal.cs. This class inherits from Animal. Add a private
attribute awesome_lvl to the class. For the moment this class does not compile. In the same �le
create the Hen class which also inherits from Animal. Add a protected attribute nb_feathers.
This class also does not compile. What is the error ?

3.3 Default constructor

When an object of class B is instantiated, if B inherits from A, then the constructor of A is
implicitly called.

public class B : A

{

public B()

// Implicit call of A constructor here

{

// Constructor of B

}

}

The call of A constructor is done before instructions in the constructor B() are executed. If an
object of type Pony is created, the constructor Animal() is implicitly called. The problem is that
we rede�ned a constructor with the following prototype: Animal(int nb_legs, int pos_x,

int pos_y). This new constructor hides the default constructor Animal(). That is why Visual
Studio says that Animal does not have a constructor which takes no argument.

3.4 Base constructor

The solution to this problem is to explicitly call a constructor of the base class with parameters.
To call a method of the base class, we will use the keyword base. So we will call the constructor
of Animal with three parameters. This code must be written before the braces because the
Animal constructor is called before the execution of instructions in the Pony constructor.

public class A

{

// Some code here

}

public class B : A

{

public B(/* Some parameters here if you want */)

: base.A (/* Some parameters here */)

{

//Some code here

}

}

In this way we can call the wanted A constructor.

4

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

Work to do

Write the Pony constructor class by using this technique. You will call Animal constructor
with 4 legs and pos_x and pos_y given as arguments to the Pony constructor. This constructor
sets the private attribute awesome_lvl (the value must be between 0 and 41). Do the same thing
for nb_legs but here nb_legs is 2. Choose a number of feathers between 301 and 2500.

public Pony(int pos_x, int pos_y)

public Hen(int pos_x, int pos_y)

4 Abstraction

4.1 Abstract class

If we create a class per animal, the Animal class has only one purpose: to provide a common
base to all its subclasses, namely the attributes nb_legs, pos_x and pos_y. So instantiating the
Animal class is not logical. We will make it non instatiable by making it abstract.

An abstract class is not instantiable. But its subclasses can be instantiated. The keyword to
use is abstract.

public abstract class A

{

// ...

}

A example = new A(); // Impossible

By doing this, A is abstract. You cannot create an object of type A. But you can create a new
class which inherits from A.

public class B : A

{

// ...

}

B example = new B(); // Possible

Work to do

Change your Pony class so it becomes an abstract class.

4.2 More inheritance, more fun

For the moment we have two classes, Pony and Hen that inherit from Animal. Since an
inheritance relationship can have several levels, Animal can inherit from another class (abstract
or not). And Hen can have subclasses.

5

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

Work to do

We provide you with the Drawable class that manages display. Animal have to inherit from
Drawable because an animal is a drawable element. If you have problems with the Drawable

class, make sure you are in the right namespace myFarm.

5 The ground

5.1 Ground inheritance

We will have two types of ground on which our animals will tread: dirt and grass. Dirt and
grass have an is a relationship with the ground. This is much like what you have done for Animal
and Pony/Hen so you know how it works.

Work to do

Create a new �le Ground.cs and create an abstract class named Ground. Add two classes,
Dirt and Grass, which inherit from Ground. These classes have an attribute bool occupied to
know if the cell is occupied or not.

Think about what you have done. You have a Ground class, an empty abstract class, and two
classes (Dirt and Grass) with the same attributes. In fact, Ground is useless! If you do things
properly, you surely factorized common code of Dirt and Grass and have put it in Ground. Good
! But in this case Dirt and Grass are useless !

Here, two types of ground (dirt and grass) can simply be represented with only one non abstract
class (Ground). This class will have an attribute called type which de�nes the type of ground.

5.2 Ground enumeration

For this attribute type, we will use an enumeration. Here is a reminder of enumeration syntax:

// Enumeration declaration

enum enum_ex

{

enum_1,

enum_2,

enum_3

};

// Utilisation of the enumeration

enum_ex mon_enum = enum_1;

mon_enum = enum_2;

Work to do

In the �leGround.cs before the declaration of Ground, create the enumeration called groundType
which has dirt and grass in the enumerator list. Change Ground to add the attribute type.
The prototype of the constructor is:

6

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

public Ground(Vector2 pos, groundType ground_t)

6 Creation of the game

6.1 7up

It is time to take up the graphic rendering. This part has been started so you just have to
complete it.
To draw an element, you will need some textures. These textures will be the same for each
animal.
It is illogical to instantiate a class Texture, that is why it will be static.

Work to do

Go in the �le named Textures.cs which contains a static class Textures. This class contains, as a
static attribute, pony_textures of type Texture2D. Complete this class with the other animals,
ground types and the farm.
Texture also contains a static method that allows you to load the correct png �le for each
texture. A folder of textures already exists for this project. These have been imported in the
myFarmContent (Content) module, in a Sprites folder.
Follow the example to complete the load() method. In the �le Game1.cs, call this static method
LoadContent().

Textures.load(Content);

The parameter given to load() is a content manager. It is an attribute of Game, of which
Game1 inherited.

6.2 Elements drawing

Now, we have to make our instantiable Drawable objects (farm, dirt, grass, etc. . . ) with the
correct texture. Let's begin with Animal.

Work to do

Modify the Animal constructor to make it take three parameters instead of two, the new one
being a drawable_type drawable_t that is an enumeration containing all drawable elements.
You should now call the Drawable constructor in the Animal constructor.

public Animal(uint nb_legs, Vector2 pos, drawable_type drawable_t)

: base(drawable_t)

{

// Some code here

}

Next, modify the Pony and Hen constructors to call the Animal constructor with the correct
drawable_type. Do the same for Ground.

7

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

6.3 The farm

Create a new �le Farm.cs containing a Farm class inheriting from Drawable. The farm has two
attributes: size_x and size_y of type int and an array of type Ground called grounds.
As a reminder, the declaration of a two-dimensional array is:

// Declaration of a 2-dimensional array of type A

A[,] array;

// Initialisation of this array

array = new A[10,10];

The Farm constructor will take as parameters two integers, representing the width and height
of the farm. The constructor will change the size_x and size_y attributes accordingly and
instantiate the Ground array with the correct size. The ground has chance in three to be grass.
You also have to call a method to add animals in the farm. This method will take a random cell
and create an animal if it is free. The animal has a 50% chance to be a hen and 50% to be a
pony.

Work to do

Implement the two following methods:

public Farm(int size_x, int size_y)

public void addAnimal()

Do not forgot to update the farm when putting an animal in a cell and to set it as occupied.

6.4 Draw me a farm

Now you have to draw all the elements. To display a Drawable, you only have to call its Draw()
method.

Work to do

In the �le Farm.cs, create the display() method that can print all the elements. Here is the
prototype:

public void display(SpriteBatch sb)

In this method, you have to:

� Print the farm.

� Print the correct ground for each cell.

� Print the correct animal contained in the cell if there is one.

8

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

6.5 My farm

We are close to the end! Now, go in Game1.cs and add an attribute my_farm of type Farm. In
LoadContent(), crate a new farm of size 10*10 and with 10 animals in it.
Finally, in the Draw() method, write:

// TODO: Add your drawing code here

spriteBatch.Begin();

my_farm.display(spriteBatch);

spriteBatch.End();

You are now a real farmer!

7 Next generation

7.1 Raising chicks

It is good to have hen but it will better to have chicks. To do so, create a new class Chick that
inherits from Hen.

Work to do

Modify Textures.cs and Drawable.cs to handle chicks.

Create a chick

We need to create a constructor for the Chick class. If we write the following method. . .

public Chick(int feather, Vector2 pos)

we will have a little problem. In fact, the Chick constructor calls the Hen constructor that
calls the Animal constructor with the drawable_type of the Hen. So the Chick will also have the
texture of a hen. . .
A possible solution is to overload the Hen constructor with a method that takes as third parameter
a drawable_type as follows:

public Hen(int feathers, Vector2 pos, drawable_type drawable_t)

Work to do

Go in the Animal.cs �le and implement the new constructor of Hen. Then, create the Chick

constructor and modify the addAnimal() method to generate some chicks.

8 Animation in the farm

8.1 Animals update

A static farm is not interesting, so let's make it more attractive.
Here are some rules to make your animals move:

9

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

� A pony moves from (awesome_lvl % 2) + 1) cells in one of the eight directions from its
cell.

� A hen moves from one cell (or two cells if the number of feathers is a multiple of three) in
one of the eight directions from its cell.

� A chicken moves from one cell in one of the eight directions if its number of feathers is a
multiple of two. Every turn, its number of feathers can increase of eleven. If its number of
feathers exceeds 300, it becomes a hen.

� Do not forgot to update the state of the cell and to check if the new cell is out of the range
of the array.

Work to do

Go in class Animal and add the Update() method. Let us assume that an animal does nothing
when it is updated. So, if we do not implement an Update() method in a class that inherits
from Animal, instantiated objects will have this behavior.
For our speci�c animals, a custom Update method will be called. The keywords virtual and
override were made for this. They will hide the base class method to use the child's one. That
is polymorphism.

class A

{

public virtual void method(/* Some parameters */)

{

// Some instructions

}

}

class B : A

{

}

class C : A

{

public override void method(/* The SAME parameters */)

{

// Some others instructions

}

}

10

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

// Some examples

A ex_1 = new A();

B ex_2 = new B();

C ex_3 = new C();

C ex_4 = new A();

ex_1.method(/*...*/); // call A's method

ex_2.method(/*...*/); // call A's method

ex_3.method(/*...*/); // call C's method

ex_4.method(/*...*/); // call C's method

There is another keyword related to polymorphism: new. Contrary to override, it completely
hides the base class. new still allows the access to an inherited class if the object is interpreted
as a base class.

class A

{

public void method(/* Some parameters */)

{

// Some instructions

}

}

class B : A

{

public new void method(/* The SAME parameters */)

{

// Some other instructions

}

}

// Some examples

B ex_1 = new B();

A ex_2 = new B();

ex_1.method(/*...*/); // call B's method

ex_2.method(/*...*/); // call A's method

(A)ex_2.method(/*...*/); // call A's method

You need to be aware that overloading is not polymorphism. Overloading consists in two
di�erent methods that have the same name but a di�erent signature. Polymorphism consists in
a base class on that has a certain method and a son class with a method with the same signature.
In our project, we have an array of type Animal and we want to call the speci�c method to each
class. To do so, we need to use virtual and override.

Work to do

Implement the necessary update(Farm farm) methods.

11

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

// In Animal class

public virtual void update(Farm farm)

// In inherited classes

public override void update(Farm farm)

The order of actions to be executed:

// Update the Animal

// Previous ground is now not occupied

// New ground is now occupied

// New ground contains the animal we are talking about:

farm.grounds[new_x, new_y].containing = this;

8.2 Update of the farm

Let us create an update() method in the Farm class.

public void update();

Do not update an animal that has just moved because it will be updated twice in the same
turn. The best way to do it is to add an nb_updates() attribute for the farm and each animal.
When the farm updates, it increments this attribute. Before updating an animal, we compare if
the number of updates of the farm is heigher than the number of updates of the animal. If so,
increment the nb_updates attribute of the animal and update it.

8.3 Move that chick

A chick has to have more than 300 feathers to become a hen. When the number of feathers is
su�cient, tranform the chick into a hen in the new cell.

Work to do

Create a new constructor for the Hen class that take a Chick as parameter.

public Hen(Chick previous)

This constructor will give the same number of feathers and and the same number of updates
to the new hen. Then, create a new hen for the farm:

farm.grounds[new_x, new_y].containing = new Hen(this);

8.4 A new state

Finally, update the farm when the touch Enter is pressed. To do so, go in Game1.cs and print
this in the update() method.

if (Keyboard.GetState().IsKeyDown(Keys.Enter))

my_farm.update();

Congratulations, you now have a farm with ponies, hens and chicks!

12

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#

tp 07 � February 2014
Info-Sup

Epita

9 Bonus

9.1 More and more animals

Here are some examples of animals that you can add to the farm:

� Cows have an integer attribute nb_spots somwhere between 5 and 10. They head to the
grass from one cell per turn and it becomes dirt. If a cow is surrounded by dirt, it moves
randomly from two cells in one of the eight direction.

� Pigs stay on dirt and avoid grass. If they are surrounded by grass, they cannot move,
otherwise, they move from one cell.

� Roosters head to the nearest hen. When they are on the same cell, the hen heads to the
top cell and the rooster the bottom one and a chick appears between them.

� Now that the rooster exists, the chick can evolve in Rooster. It has a 60% chance to become
a hen and 40% a rooster.

� You can also handle life and death. When an animal exceeds 100 turns, it dies and has a
70% of chance of creating a new animal in the current cell.

Of course, you can create your own animals!

9.2 Plants

A farmer does not just have animals, it can also grow crops!
Handling crops implies that every cell can now be updated.

� At each update, a dirt cell has a 25% chance to become grass.

� You can plant corn. Every grass cell has a 10% chance to become a sprout of corn. It
makes 3 turns to become corn. Then, every pig heads to the corn cell and the �rst one
eats it. The cell becomes dirt.

� If the whole farm is reduced to dirt, all animals die and it is the end of the game.

13

ACDC
2016

IT’S DANGEROUS TO CODE ALONE


	Do you remember OOP ?
	Object-oriented programming
	Lost objects

	Become a farmer
	Dwarf and farm
	The project

	The farm animals
	Your first animal
	Animal inheritance
	Default constructor
	Base constructor

	Abstraction
	Abstract class
	More inheritance, more fun

	The ground
	Ground inheritance
	Ground enumeration

	Creation of the game
	7up
	Elements drawing
	The farm
	Draw me a farm
	My farm

	Next generation
	Raising chicks

	Animation in the farm
	Animals update
	Update of the farm
	Move that chick
	A new state

	Bonus
	More and more animals
	Plants


