
C#
tp 08 – February 2014

Info-Sup
Epita

My Little Photoshop

1 Instructions
At the end of this practical work, you will have to hand in an archive file following these in-
structions:

rendu -tpcs2 - login_x .zip
|-- rendu -tpcs2 - login_x /

|-- AUTHORS
|-- MyLittlePhotoshop .sln
|-- MyLittlePhotoshop

|-- Everything except bin/ et obj/

Of course you have to replace "login_x" with your own login.

Do not forget to check the following items before handing the file in:

• The AUTHORS must follow the usual format (a *, a space, your login and a new line).

• No bin or obj directories in the project.

• The code must compile!

2 Introduction

2.1 Objectives

During this practical work you will study the following topics:

• The use of Bitmap in C#

• Image Processing

• A bit of maths. . .

3 Course

3.1 Image Processing

In imaging science, image processing is any form of signal processing for which the
input is an image, such as a photograph or video frame; the output of image pro-
cessing may be either an image or a set of characteristics or parameters related to
the image.

— Wikipedia

Image processing has been an active field since the 1920s with at first compression methods
to make image transmission possible despite the very limited network capabilities at that time.
It then developed for the second world war with radar but it is mostly since the 1960s that the

1

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#
tp 08 – February 2014

Info-Sup
Epita

modern techniques were developed with the discovery of links with signal processing and the
increasing power of computers.

Nowadays this field is everywhere in popular software or embedded boards to allow robots
to determine what is around them for instance.

This processing is usually done by applying operators on an image which we can separate
into three major families:

Point by point operators
These are the simplest and consist in applying a color changing function on each of the
pixels without worrying about their neighbours.

Local operators
They can achieve more complicated processing by taking into account the pixels near the
one being processed. They are necessary for filters like blurs.

Morphological operators
Based on mathematical morphology1, they are mainly used to extract elements from an
image in order to interpret them and extract information.

By applying and combining these kinds of operators, one can retrieve a lot of information
from an image for a lot of applications like text recognition, mapping or video tracking for
instance.

This week’s practical work will not deal much with information extraction, but rather with
filters to enhance the image or prepare it for further steps.

3.2 The Bitmap class

To represent an image and be able to modify its pixels in C# , one can use the Bitmap class
that provides the GetPixel(x, y) and SetPixel(x, y, color) methods.

To discover all its functionnalities, you can visit its MSDN page2 or instanciate the class and
let Visual Studio autocomplete the list of its attributes and methods after puting a dot at the
end of the created object’s name.

In order to use the Bitmap class add this line at the beginning of the files:

using System.Drawing;

4 Exercises

4.1 Before starting

During this practical work you will have to search for documentation on the internet. Here are
some interesting links to help you:

• http://en.wikipedia.org/wiki/Image_processing

• http://docs.gimp.org/en/plug-in-convmatrix.html

• http://en.wikipedia.org/wiki/Gaussian_blur

• http://en.wikipedia.org/wiki/Edge_detection

You can download the base code on http://perso.epita.fr/~acdc.
To start, create a Filters class where you will implement everything.

1http://en.wikipedia.org/wiki/Mathematical_morphology
2http://msdn.microsoft.com/en-us/library/system.drawing.bitmap%28v=vs.110%29.aspx

2

ACDC
2016

IT’S DANGEROUS TO CODE ALONE

http://en.wikipedia.org/wiki/Image_processing
http://docs.gimp.org/en/plug-in-convmatrix.html
http://en.wikipedia.org/wiki/Gaussian_blur
http://en.wikipedia.org/wiki/Edge_detection
http://perso.epita.fr/~acdc
http://en.wikipedia.org/wiki/Mathematical_morphology
http://msdn.microsoft.com/en-us/library/system.drawing.bitmap%28v=vs.110%29.aspx


C#
tp 08 – February 2014

Info-Sup
Epita

4.2 Exercise 0: Point by point

Write the MapPixels function that browses the given Bitmap and replaces each of its pixels with
the result of the application of the f function given as the second parameter (just as we did in
OCaml – you will hear about it more in detail later).

Prototype:

public static Bitmap MapPixels(Bitmap img, Func<Color, Color> f)

4.3 Exercise 1: First filters

Write the functions described below representing point by point filters to be given to the
MapPixels function.

Greyscale
Turns the image to grey scales. Remember to search for the appropriate coefficients for
each component to get good results.

Pinkify
Makes the image more pink while keeping it recognizable. You can calculate a "pink scale"
the way you did for the previous filter and return the average of this value and the base
color for example.

Binarize
Turns the image into a binary one (black and white only) with a threshold method (other
methods are significantly better but can not be applied point by point).

Invert
Turns the image into its negative (black becomes white and vice-versa).

Prototypes:

public static Color Greyscale(Color c)
public static Color Pinkify(Color c)
public static Color Binarize(Color c)
public static Color Invert(Color c)

4.4 Exercise 2: Mirror, beautiful mirror

Write the MirrorH and MirrorV that apply respectively a vertical and horizontal symmetry to
the image.
Prototypes:

public static Bitmap MirrorH(Bitmap img)
public static Bitmap MirrorV(Bitmap img)

4.5 Exercise 3: Convolution

Write the Convolution function that applies a square convolution matrix (same width and
height) to an image.
To do that you have to browse the image and replace each component of the current pixel’s color
with the sum of the products of the equivalent component of a nearby pixel and its coefficient
in the matrix.
Here is a schematic to demonstrate the algorithm:

3

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#
tp 08 – February 2014

Info-Sup
Epita

You can consider the pixels outside the image as being black (0 everywhere).
PROTIP: You can write an IsValid(int x, int y, Size s) function to test if the coordinates
are inside the image.
PROTIP 2: To avoid overflows due to matrix errors or floating point approximation it is advised
to check if the components stay in the [0; 255] range.
PROTIP 3: You can retrieve the width of the matrix with mat.getLength(0) (or 1 for the
height but that should not be needed here).
PROTIP 4: Don’t forget to work on a copy of the image to avoid interfering with your own
processing.

Prototype:

public static Bitmap Convolution(Bitmap img, float[,] mat)

4.6 Exercise 4: Enter the Matrix

Define the AverageMat, GaussMat and EdgeMat matrices that will be used by Convolution, a
size of 3x3 is enough here and should not take too long to be applied:

AverageMat
Average blur matrix.

GaussMat
Gaussian blur matrix. Do not forget to normalize (sum of the fields = 1) to avoid overflows.

EdgeMat
Edge detection matrix. Search for Roberts, Prewitt, Sobel and Canny methods (sorted by
difficulty).

To define a matrix in C# you can do it like this:

public static float[,] MyLittleMatrix = new float[,]
{

{0, 0, 0},
{0, 1, 0},
{0, 0, 0}

};

4.7 Bonus

Here are some bonus ideas sorted by difficulty:

Easy

• Brightening filter (log)
• Darkening filter (exp)

Medium

4

ACDC
2016

IT’S DANGEROUS TO CODE ALONE



C#
tp 08 – February 2014

Info-Sup
Epita

• Other convolution matrices
• Rotations

Hard

• Morphology filters (erosion, dilation, opening, closing)

Over 9000

• Blob detection (segmentation and union-find)
• Use Fourrier transforms (FFT) to speed up a lot
• Use ClGlInterop3 to speed up even more

5 Expected results

Figure 1: Base image Figure 2: Greyscale

Figure 3: Pinkify Figure 4: Binarize

3http://www.cmsoft.com.br/index.php?option=com_content&view=category&layout=blog&id=
137&Itemid=197

5

ACDC
2016

IT’S DANGEROUS TO CODE ALONE

http://www.cmsoft.com.br/index.php?option=com_content&view=category&layout=blog&id=137&Itemid=197
http://www.cmsoft.com.br/index.php?option=com_content&view=category&layout=blog&id=137&Itemid=197


C#
tp 08 – February 2014

Info-Sup
Epita

Figure 5: Invert Figure 6: MirrorV

Figure 7: MirrorH Figure 8: AverageMat

Figure 9: GaussMat Figure 10: EdgeMat

It’s dangerous to code alone !

6

ACDC
2016

IT’S DANGEROUS TO CODE ALONE


	Instructions
	Introduction
	Objectives

	Course
	Image Processing
	The Bitmap class

	Exercises
	Before starting
	Exercise 0: Point by point
	Exercise 1: First filters
	Exercise 2: Mirror, beautiful mirror
	Exercise 3: Convolution
	Exercise 4: Enter the Matrix
	Bonus

	Expected results

