C# Info-Sup
TP 08 — Février 2014 EpriTA

My Little Photoshop

1 Consignes de rendu

A la fin de ce TP, vous devrez rendre une archive respectant ’architecture suivante :

rendu-tpcs8-login_x.zip
| -- rendu-tpcs8-login_x/
| -- AUTHORS
|-- MyLittlePhotoshop.sln
|-- MyLittlePhotoshop
| -- Tout sauf bin/ et obj/

Bien entendu, vous devez remplacer "login_x" par votre propre login.
N’oubliez pas de vérifier les points suivants avant de rendre :

— Le fichier AUTHORS doit étre au format habituel (une *, une espace, votre login et un retour
a la ligne).

— Pas de dossiers bin ou obj dans le projet.

— Le code doit compiler !

2 Introduction

2.1 Objectifs

Lors de ce TP nous allons aborder les notions suivantes :

— L’utilisation des Bitmap en C#
— Le traitement d’image
— Un peu de maths. ..

3 Cours

3.1 Le traitement d’images

Le traitement d’images est une discipline de l'informatique et des mathématiques
appliquées qui étudie les images numériques et leurs transformations, dans le but
d’améliorer leur qualité ou d’en extraire de 'information.

— Wikipedia

Le traitement d’image est un domaine actif depuis les années 1920 avec d’abord des problé-
matiques de compression pour permettre la transmission d’images malgré les fortes limitation des
télécommunications de ’époque, il s’est ensuite développé pour les besoins de la seconde guerre
mondiale avec le radar mais c’est surtout a partir des années 1960 que les techniques modernes
se sont développées avec la découverte des liens avec le traitement de signal et 'augmentation
de la puissance des ordinateurs.

ACDC

- 2616
/EPITRA A

ECOLE D'INGENIEURS EN INFORMATIQUE 1 IT*S DANGEROUS TO CODE ALONE

C# Info-Sup
TP 08 — Février 2014 EpriTA

Aujourd’hui ce domaine est omniprésent que ce soit au travers de logiciels grand public ou
de logiciels embarqués permettant par exemple a un robot de percevoir son environnement.

Le traitement s’effectue généralement par application d’opérateurs sur une image que ’on
peut séparer en trois grandes familles :

Les opérateurs point a point
Ce sont les plus simples, ils consistent en 'application d’une fonction de changement de la
couleur a chaque pixel de I'image sans se préoccuper de ses voisins.

Les opérateurs locaux
Ils permettent des traitements plus évolués en prenant en compte les pixels voisins du pixel
en cours de traitement, ils sont nécessaires pour des traitements tels que les flous.

Les opérateurs morphologiques
Basés sur la morphologie mathématiqueﬂ ils sont principalement utilisés pour extraire des
éléments d’une image afin de les interpréter et extraire de I'information.

Par 'application et la combinaison de ces différents types d’opérateurs on peut récupérer de
nombreuses informations d’une image pour des utiilisations variées telles que la reconnaissance
de texte, la construction de cartes ou le suivi sur vidéo par exemple.

Le TP de cette semaine ne parlera presque pas d’extraction d’information mais plutot des
traitements d’amélioration ou de préparation pour d’autres étapes.

3.2 La classe Bitmap

Pour représenter une image et pouvoir modifier ses pixels en C# on peut utiliser la classe
Bitmap qui fournit les méthodes GetPixel(x, y) et SetPixel(x, y, color).

Pour découvrir toutes ses fonctionnalités vous pouvez visiter sa page MSDN E] ou instancier
la classe et laisser Visual Studio autocompléter la liste de ses attributs et méthodes apres avoir
mis un point apres le nom de l'objet créé.

Pour pouvoir utiliser la classe Bitmap ajoutez cette ligne au début des fichiers qui en ont
besoin :

|using System.Drawing;

4 Exercices

4.1 Avant de commencer

Au cours de ce TP vous allez devoir rechercher une partie des informations nécessaires sur
internet, pour vous guider voici quelques liens intéressants :

— http://fr.wikipedia.org/wiki/Traitement_d7%27images

— http://fr.wikipedia.org/wiki/0p%C3%A9ration_point_%C3%A0_point
http://docs.gimp.org/fr/plug-in-convmatrix.html
http://fr.wikipedia.org/wiki/Lissage_d%27images
— http://fr.wikipedia.org/wiki/D}C3%A9tection_de_contours
Vous pouvez télécharger le code de base sur http://perso.epita.fr/~acdcl
Pour commencer créez une classe Filters ou vous implémenterez les fonctions demandées.

1. http://fr.wikipedia.org/wiki/Morphologie_mathy,C3%A9matique
2. http://msdn.microsoft.com/fr-fr/library/system.drawing.bitmap’28v=vs.110%29.aspx

N i
EPITA AL

ECOLE D'INGENIEURS EN INFORMATIQUE 2 IT*S DANGEROUS TO CODE ALONE

http://fr.wikipedia.org/wiki/Traitement_d%27images
http://fr.wikipedia.org/wiki/Op%C3%A9ration_point_%C3%A0_point
http://docs.gimp.org/fr/plug-in-convmatrix.html
http://fr.wikipedia.org/wiki/Lissage_d%27images
http://fr.wikipedia.org/wiki/D%C3%A9tection_de_contours
http://perso.epita.fr/~acdc
http://fr.wikipedia.org/wiki/Morphologie_math%C3%A9matique
http://msdn.microsoft.com/fr-fr/library/system.drawing.bitmap%28v=vs.110%29.aspx

C# Info-Sup
TP 08 — Février 2014 EpriTA

4.2 Exercice 0 : Point a point

Vous devez écrire la fonction MapPixels qui parcourt le Bitmap donné en parameétre et
remplace chacun de ses pixels par I'application de la fonction f passée en second parametre
(comme on faisait en OCaml, vous en entendrez parler plus en détail plus tard).

Prototype :

|public static Bitmap MapPixels(Bitmap img, Func<Color, Color> f)

4.3 Exercice 1 : Premiers filtres

Ecrivez les fonctions dont les les prototypes sont détaillés ci-dessous et qui représentent les
filtres point & point qui seront passés a la fonction MapPixels.

Greyscale
Passe I'image en niveaux de gris, pensez a chercher les coefficients a appliquer a chaque
composante pour un bon résultat.

Pinkify
Rend l'image plus rose tout en restant reconnaissable, vous pouvez calculer une "nuance
de rose" comme pour le filtre précédent et retourner la moyenne de cette valeur et de la
couleur de base par exemple.

Binarize
Rend l'image binaire (blanc et noir uniquement) par une méthode de seuil (d’autres mé-
thodes sont bien plus efficaces mais ne s’appliquent pas en point & point).

Invert
Transformez 'image en son négatif (le noir devient blanc et inversement par exemple).

Prototypes :

public static Color Greyscale(Color c)
public static Color Pinkify(Color c)
public static Color Binarize(Color c)
public static Color Invert(Color c)

4.4 Exercice 2 : Miroir, mon beau miroir

Ecrivez les fonctions MirrorH et MirrorV qui effectuent une symétrie des pixels de 'image
selon un plan respectivement vertical et horizontal.

Prototypes :

public static Bitmap MirrorH(Bitmap img)
public static Bitmap MirrorV(Bitmap img)

N i
EPITA AL

ECOLE D'INGENIEURS EN INFORMATIQUE 3 IT*S DANGEROUS TO CODE ALONE

C# Info-Sup
TP 08 — Février 2014 EpriTA

4.5 Exercice 3 : Convolution

Ecrivez la fonction Convolution qui applique une matrice de convolution carrée (méme
largeur et hauteur) a une image.
Pour ce faire il faut parcourir I'image et remplacer chaque composante de la couleur du pixel
en cours par la somme des produits de la composante équivalente d’un pixel voisin avec son
coefficient équivalent dans la matrice[]]
Voici un schéma pour illustrer ’algorithme :

35 |40 (41 |45 |50

40 |40 (42 |46 |52 o(1]|0

42 |46 |50 |55 |55 X o(o|o 42
—

48 |52 |56 |58 |60 o(ofo0

56 |60 (65 |70 |75

Vous pouvez considérer que les pixels en dehors de I'image sont noirs (tout a 0).
PROTIP : Vous pouvez faire une fonction IsValid(int x, int y, Size s) pour tester si des
coordonnées sont bien dans l'image.
PROTIP 2 : Pour éviter les débordements liés aux erreurs de matrices ou d’approximation de
flottants il est conseillé de vérifier que les composantes restent dans U'intervalle [0; 255].
PROTIP 3 : Vous pouvez récupérer la largeur de la matrice avec mat.getLength(0) (ou 1 pour
la hauteur mais ce n’est pas nécessaire ici).
PROTIP 4 : N’oubliez pas de travailler sur une copie de 'image pour ne pas interférer avec votre
propre traitement.

Prototype :

|public static Bitmap Convolution(Bitmap img, float[,] mat)

4.6 Exercice 4 : Entrez dans la Matrice

Définissez les matrices AverageMat, GaussMat et EdgeMat qui seront utilisées par la fonction
Convolution, une taille de 3x3 est suffisante pour ce TP et ne devrait pas étre trop lente :
AverageMat
Matrice de flou par moyenne.

GaussMat
Matrice de flou gaussien, pensez bien a normaliser (somme des cases de la matrice = 1)
pour ne pas dépasser lors de la convolution.

EdgeMat
Matrice de détection de contour, renseignez vous sur les méthodes de Roberts, Prewitt,
Sobel et Canny (par ordre de difficulté).

Pour définir une matrice en C# vous pouvez faire comme ceci :

public static float[,] MyLittleMatrix = new floatl[,]
{
{0, 0, 0},
{0, 1, 0%,
{0, o, o}
s

3. Je clair Luc, ne pas? — La stratégie de [’échec

ACDC

- 2616
/EPITRA A

ECOLE D'INGENIEURS EN INFORMATIQUE 4 IT*S DANGEROUS TO CODE ALONE

C# Info-Sup
TP 08 — Février 2014 EriTA

4.7 Bonus

Voici quelques idées de bonus triés par difficulté croissante :

Facile
— Filtre d’éclaircissement (log)
— Filtre d’assombrissement (exp)
Moyen
— Autres matrices de convolution
— Rotations
Difficile
— Filtres de morphologie (érosion, dilatation, ouverture, fermeture)
Over 9000
— Détection de blobs (segmentation puis union-find)

— Utilisation de transformées de Fourrier (FFT) pour accélérer beaucoup
— Utilisation de ClGlInteropEl pour accélérer encore plus

5 Résultats attendus

FicURE 1 — Image de base FIGURE 2 — Greyscale

“\wlvi l'l.,)
R »,

-
N
\Vpy

FIGURE 3 — Pinkify FIGURE 4 — Binarize

4. http://www.cmsoft.com.br/index.php?option=com_content&view=categoryklayout=blog&id= |

- W
EPITA A

ECOLE D'INGENIEURS EN INFORMATIQUE 5 IT'S DANSEROUS TO CODE ALONE

http://www.cmsoft.com.br/index.php?option=com_content&view=category&layout=blog&id=137&Itemid=197
http://www.cmsoft.com.br/index.php?option=com_content&view=category&layout=blog&id=137&Itemid=197

C# Info-Sup
TP 08 — Février 2014 EpiTA

2, e
“ittigiip W

FIGURE 5 — Invert FI1GURE 6 — MirrorV

W) e,
\‘\m' "”', ‘\.u' m,./

.

FI1GURE 7 — MirrorH FIGURE 8 — AverageMat

FIGURE 9 — GaussMat FiGure 10 — EdgeMat

It’s dangerous to code alone!

ECOLE D'INGENIEURS EN INFORMATIQUE 6 IT*S DANGEROUS TO CODE ALONE

	Consignes de rendu
	Introduction
	Objectifs

	Cours
	Le traitement d'images
	La classe Bitmap

	Exercices
	Avant de commencer
	Exercice 0: Point à point
	Exercice 1: Premiers filtres
	Exercice 2: Miroir, mon beau miroir
	Exercice 3: Convolution
	Exercice 4: Entrez dans la Matrice
	Bonus

	Résultats attendus

