CHt Info-Sup
TP 9 — Février 2014 EpriTA

TPC+#9 : Client & Serveur!

Table des matiéres

[1__Structure du rendul 1
[2__Introduction| 2
[3Sockets et Threads| 2
B.1 _Les socketsl e e e e e e e 2
B.1.1 Cours et exemples| 2

BI2 EXercicdl o oo 2

B.2 Les Threadsl o 3
13.2.1 Cours et exemples| e 3

B22 EXEICICE . . o o o o o e e e e e 3

[dTe clienil 4
6 Le serveurl 4
b1 Taclasse Clientl o 4
B2 Taclasse SeIvetr] . . . v v v v o e e e e e e e e e e 5

1 Structure du rendu

La structure du rendu pour ce TP ne change pas de celles que vous avez ’habitude de voir. Encore
une fois, login_x est & remplacer par votre propre login.

rendu-tpcs9-login_x.zip
- login_x/

- AUTHORS

- Client
- Client.sln
- Client/

- Serveur
- Serveur.sln
- Serveur/

/vy

1 17’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 9 — Février 2014 EpriTA

2 Introduction

Nous allons dans ce TP vous introduire les notions de sockets, threads et d’autres notions génériques
en réseau. Vous allez aussi réutiliser les notions vues précédemment (Stream...). Pour cela, vous allez
réaliser un petit chat ainsi qu’un serveur pour ce chat.

"L’environnement client-serveur désigne un mode de communication & travers un réseau
entre plusieurs programmes ou logiciels : I'un, qualifié de client, envoie des requétes; 'autre
ou les autres, qualifiés de serveurs, attendent les requétes des clients et y répondent. Par
extension, le client désigne également ’ordinateur sur lequel est exécuté le logiciel client, et
le serveur, ’ordinateur sur lequel est exécuté le logiciel serveur." - Wikipédia

3 Sockets et Threads

3.1 Les sockets
3.1.1 Cours et exemples

Avant de commencer notre chat, vous avez besoin de nouvelles notions. Vous allez voir quelques
exemples pour apprendre & utiliser ces outils, puis vous pourrez commencer le chat.
Un socket est une interface logicielle de communication entre les services du systéme d’exploitation. Mais
qui dit socket, ne dit pas obligatoirement réseau : on peut utiliser les sockets pour communiquer entre
les applications d’un ordinateur. Pour établir une connexion en C#, on utilise la classe Socket. On va
pouvoir récupérer des flux & partir de cet objet pour dialoguer. Pour établir cette connexion, il faudra
connaitre I’adresse distante (donc le serveur) ainsi que le port. Le port est un simple numéro représentant
un service. Souvent on associe un port & un protocole.

using System.Net.Sockets; |

Le constructeur d’un socket prend 3 paramétres :
— Le type d’adresse, ici nous utilisons de I'TPv4 : AddressFamily.InterNetwork
— Le type de socket : SocketType.Stream
— Le protocole de connexion utilisé entre les deux machines. Nous utiliserons le TCP, c’est le protocole
le plus courant pour ce genre d’application, il permet de garder une connexion entre deux machines,
de vérifier que le destinataire a bien recu le message, et bien d’autres choses encore. Utilisez donc
ProtocolType.Tcp.
Une fois votre socket initialisée, vous pouvez établir la connexion grace a la méthode Connect de votre
socket.
Voici un exemple de code utilisant les sockets pour envoyer "Hello" & Google (notez 'utilisation de Stream,
que vous devrez améliorer pour la suite).
N’oubliez pas de flush les streams et de fermer les sockets.

Socket s = new Socket (AddressFamily.InterNetwork, SocketType.Stream, ProtocolType.Tcp)j;
s.Connect ("www.google.fr", 80);
Stream stream = new NetworkStream(s);
stream.WriteByte((byte) H’);
stream.WriteByte((byte)’e’);
stream.WriteByte((byte)’1’);
stream.WriteByte((byte)’1’);
stream.WriteByte((byte)’0’);
stream.WriteByte((byte)’\n’);
stream.Flush();

s.Close();

3.1.2 Exercice

Faites un nouveau console nommé MyBrowser. Dans ce projet, vous allez vous connecter & un serveur

HTTP et afficher la réponse du serveur. Le but est de récupérer une page web.
ACDC

2 17’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 9 — Février 2014 EpriTA

— Le nom du site web devra étre récupéré en argument sur la ligne de commande (utilisez donc args).

Le nom du site testé sera de la forme suivante : "www.exemple.fr".

— Utiliser le port 80, c’est a dire le port http. C’est sur ce port que votre navigateur se connecte aux
sites internet pour récupérer des pages web.

— Pour récupérer une page web, il faudra envoyer le message suivant :
"GET /[pathtoressources] HTTP/1.1\nHost : [host]\nConnection : close\n\n" Vous pouvez vous
contenter de copier coller cette ligne, mais il faudra néanmoins remplacer [host] par le nom du site
sans le "www."
Par exemple, pour http ://www.google.fr, il faudra mettre :
"GET / HTTP/1.1\nHost : google.fr\nConnection : close\n\n"
Vous pouvez consulter la page du Wikipédia sur le protocole HTTP pour en apprendre plus, car ce
n’est pas le sujet d’aujourd’hui.

— Utilisez un Console.Read() a la fin de votre main pour laisser le temps a 'utilisateur de voir ce qui
s’est, affiché.

— Utilisez les StreamReader et StreamWriter.

— Comme exemple pour cette exercice, vous pouvez si vous le voulez récuperer le fichier browser _test
a Padresse suivante : perso.epita.fr/ deabre p/browser test.

3.2 Les Threads

Vous allez avoir besoin d’utiliser des threads pour votre chat.

3.2.1 Cours et exemples

Qu’est ce qu’un thread ? Un thread est une tache qui peut s’effectuer en "paralléle" a d’autres taches.
L’éxécution de votre programme va se découper en plusieurs sous taches. Pour l'instant, nous n’avions
qu’un seul thread (une seule tache). Avec un autre thread, nous pourrions en plus faire autre chose. Nous
allons donc nous occuper de la réception des messages du chat sur un autre thread. Les threads sont
particuliérement utiles pour les interfaces graphiques, cela permet de faire des calculs lourds sur un (ou
plusieurs) thread et de continuer 4 faire fonctionner l'interface sur un autre thread. Le constructeur prend
en paramétre un objet ThreadStart, qui prend lui méme un delegate (cette notion sera abordée plus tard,
passez lui simplement le nom de votre méthode, donc sans mettre de parenthéses). Il ne reste plus qu’a
faire appel a la méthode Start de notre objet, pour lancer le thread.

Exemple de code :

static void Main(string[] args)
{
Thread t = new Thread(new ThreadStart(MyThread)); // Création de 1’objet Thread.
t.Start(); // L’appel de cette méthode appelle la méthode "MyThread".
Thread.Sleep(500); // Met le thread principal en pause pour 500 ms.

t.Abort () ;\\

X
\\

static void MyThread()
{
// Fonction qui sera lancée pour chaque thread.
3
X

3.2.2 Exercice

Faites un nouveau projet Console nommé MyFirst Thread. Faites une méthode statique qui affiche 100
fois "Thread 1" et une autre affichant 100 fois "Thread 2".
Dans le Main, faites 2 threads éxécutant chacun I'une des deux méthodes.
Cet exercice simple vous fera comprendre comment les threads s’éxécutent.

/vy

3 17’5 DANGEROUS TO CODE ALONE

CHt Info-Sup
TP 9 — Février 2014 EpriTA

4 Le client

Nous allons maintenant nous attaquer a la partie client de ce TP. La partie client de votre application
est le logiciel qui va se connecter au serveur du chat. Pour tester cette partie, demandez & vos ACDCs
qu’ils lancent le serveur et qu’ils vous donnent I’IP de leur machine.

Commencez tout d’abord par faire une nouveau projet console que vous nommerez Client. Faites une
nouvelle classe nommée Client. Cette classe doit contenir les attributs suivants :

— Le nom de l'utilisateur essayant de se connecter

— Une socket

— Un StreamWriter

— Un StreamReader
Vous pouvez ajouter d’autres attributs si cela vous semble utile.

Vous devrez dans un premier temps fournir un constructeur sans paramétres qui initialise la socket
ainsi que les méthodes suivantes :

public void Connect(string host, int port, string name);
public bool IsConnected();

public void Run();

public void Read(Q);

public void Write();

public void Close();

— Connect : se connecte au serveur demandé grace a ’hote et au port passés en paramétre. Vous
pouvez gérer le cas ol la connexion ne se serait pas effectuée grace une SocketException et afficher
un message d’erreur. A la connexion, envoyez tout d’abord votre pseudo, puis si le message regu sur
le StreamReader est "Welcome" alors on affichera un message "Confirmation : Welcome", sinon on
affichera "You're blacklisted, get lost".

— IsConnected : retourne vrai si le socket est connecté & un hote distant. Il existe une méthode de
Socket permettant de vérifier cela.

— Run : Crée deux threads (vous passerez en parameétre du ThreadStart les méthodes Read a I'un et
Write & 'autre, défnies ci-dessous), les lance puis fait en sorte que les threads se bloquent /attendent
jusqu’a ce que le thread que 'objet représente se termine, pour cela nous utiliserons la méthode
Join. Elle appellera ensuite la méthode Close (voir ci-dessous).

— Read : siil y a des données disponibles pour la lecture, affiche ces données (qui sont sur le Stream-
Reader) sur la console. Pour cela, regarder la documentation de la méthode Poll d’un Socket.

— Write : Lis sur la console la phrase qui va étre envoyée au serveur, le met sur le StreamWriter. On
oublie pas de flush ce dernier a la fin.

— Close : Flush le StreamWriter, ferme ce dernier ainsi que le StreamReader et ferme le socket.

5 Le serveur

Maintenant que le client est terminé, nous allons faire le serveur. Pour le serveur, vous devez créer un
nouveau projet console car le client et le serveur sont deux parties différentes (ce seront deux éxécutables
différents, vous lancerez le serveur d’un coté et le client de autre!). Nommez ce projet Server. On décom-
posera cette partie en deux sous parties : la gestion des utilisateurs, et le traitement et la transmission
des messages aux utilisateurs.

5.1 La classe Client

Vous allez créer une classe Client. Celle-ci aura les attributs suivants :

— Un nom, que l'on pourra récupérer mais pas modifier (utilisez les getters et setters).
— Un nom d’hoéte

— Un port

— Une socket associée

— Un StreamReader

/vy

4 TS oANGERGUS To CODE ALONE

CHt Info-Sup
TP 9 — Février 2014 EpriTA

— Un StreamWriter
Elle aura un constructeur qui prendra en paramétre un nom, un nom d’hoéte, un port et une socket.
Ele possédera les méthodes suivantes :

public void Send(string message) ;
public string Receive();

Send écrit le message passé en paramétre sur le Stream (n’ouliez pas de flush).
Receive lit un message sur le Stream et le retourne. Si une erreur survient, la méthode renvoie null.

5.2 La classe Serveur

Vous allez maintenant créer une classe Server. Notre serveur possédera deux attributs : une socket qui

lui est associée et une LinkedList pour stocker les différents clients connectés au serveur et ainsi gérer le
multiclient.
Le constructeur prendra en paramétre le port. Dans ce constructeur on initialise le socket. Nous allons
vouloir accepter une connexion, pour cela nous allons utiliser les méthodes Bind et Listen. La méthode
Bind prend en paramétre un IPEndPoint qui lui méme prendra un TPAddress. Any en paramétre. Regardez
comment utiliser la méthode Listen, elle vous sera utile. On initialise également la liste des clients. Vous
devez faire les méthodes suivantes :

public void Run();
public void AcceptClient();
public void Chat();

— Run : crée deux threads : un pour lancer AcceptClient (voir ci-dessous) et un autre pour lancer la
méthode Chat (voir ci-dessous).

— AcceptClient : elle attend la connexion d’un client & l'aide de la méthode Accept qui retourne un
objet de type Socket et qui symbolise le lien entre le client et le serveur. Nous allons créer ici notre
client (on accédéra aux informations nécessaires grace au socket récupéré), 'ajouter & notre liste
et envoyer "Welcome". On écrira également sur la console "Connexion from [client name]". "Client
name" a remplacer par le nom du client renseigné auparavant bien évidemment.

— Chat : Cette fonction va écrire les messages qui seront envoyés par les différents clients (ceux qui
se sont connectés évidemment !) sur la console sous la forme suivante : "[client name] : [message]".
Chaque client recevra ce message également.

/vy

5 17’5 DANGEROUS TO CODE ALONE

	Structure du rendu
	Introduction
	Sockets et Threads
	Les sockets
	Cours et exemples
	Exercice

	Les Threads
	Cours et exemples
	Exercice

	Le client
	Le serveur
	La classe Client
	La classe Serveur

